
Kinco步科

CANopen通讯基础-1

应用技术部 ——李勇

Kinco步科

- 1 CAN概述
- 2 CAN基本原理
- 3 CANopen概述
- 4 CANopen对象词典
- 5 CANopen通讯标识符

CAN概述

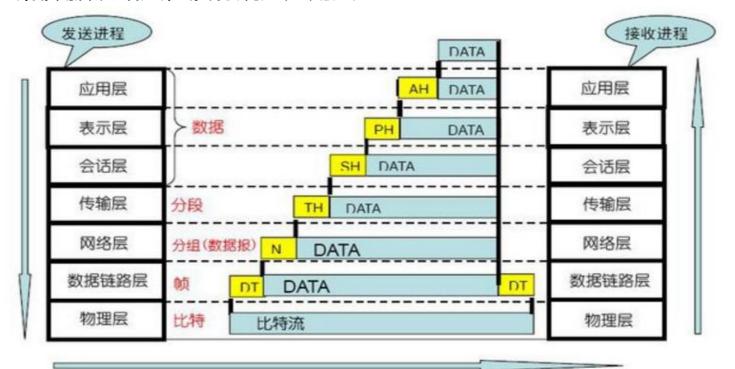
什么是CAN?

- Controller Area Network,控制器局域网,是国际上应用最广泛的现场总线之一
- 是20世纪80年代初德国Bosch公司为解决现代汽车中众多控制单元、测试仪器之间的实时数据交换而开发的一种串行通信协议

CAN概述

CAN的发展史

- 1983年, Bosch开始研究车上网络技术
- 1986年,Bosch在SAE(美国汽车工程师学会)大会公布CAN协议
- 1987年,Intel和Philips先后推出CAN控制器芯片
- 1991年, Bosch颁布CAN 2.0技术规范, CAN2.0包括A和B两个部分
- 1991年,CAN总线最先在Benz S系列轿车上实现
- 1993年,ISO颁布CAN国际标准 ISO-11898
- 1994年, SAE颁布基于CAN的J1939标准
- 2003年,Maybach发布带76个ECU的新车型(CAN, LIN, MOST)
- 2003年, VW发布带35个ECU的新型Golf


CAN概述

CiA组织

1992年,一些公司创建了非盈利性组织-CAN in Automation(CiA),以提供与CAN相关的技术、产品和市场营销方面的信息。此举旨在提升CAN的形象,并且为CAN协议未来的发展铺平道路。 到2020年年初,已有670家公司加入CiA组织。

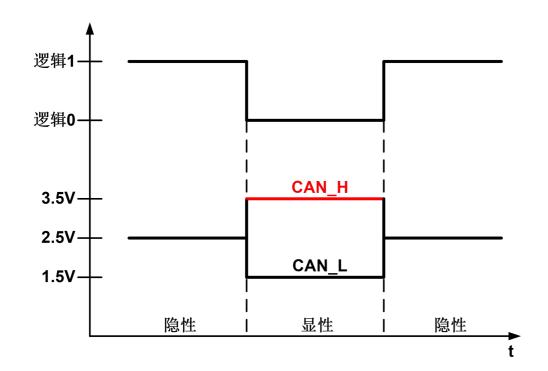
CAN的OSI模型:

- 七层模型,亦称OSI (Open System Interconnection)。参考模型是国际标准化组织 (ISO) 制定的一个用于计算机或通信系统间互联的标准体系,一般称为OSI参考模型或七层模型
- 从OSI 网络模型的角度来看同,现场总线网络一般只实现了第1层(物理层)、第2层(数据链路层)、第7层(应用层)。因为现场总线通常只包括一个网段,因此不需要第3层(传输层)和第4层(网络层),也不需要第5层(会话层)第6层(描述层)的作用
- CAN 只定义物理层和数据链路层,没有规定应用层

CAN的OSI模型:

- 数据链路层:包括介质访问控制 (MAC) 层和逻辑链路控制 (LLC) 层,关键是形成数据帧。物理层:有时也称物理接口,是实现物理连接的功能描述和执行连接的规程,提供用于建立、物理连接的机械、电气、功能和规程的条件,物理层有四个重要特性:
 - -连接器、引脚数、引脚排列 机械特性-
 - 阻抗和阻抗匹配、传输速度和距离 信号电平高低、
 - 信号线(数据、控制、地线)的功能分配和确切定义
 - 规程特性——各信号线的工作规则和时序

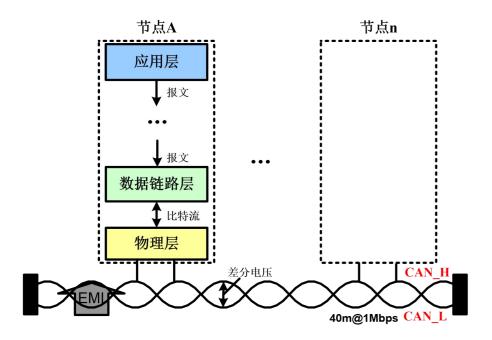
0SI参考模型


7.应用层
6.表示层
5.会话层
4.传输层
3.网络层
2.数据链路层
1.物理层

2.数据链 路层	逻辑链路控制LLC
	媒介访问控制MAC
1.物理层	物理信令子层PLS
	物理介质连接PMD
	介质相关接收MDI

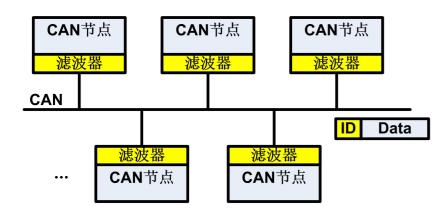
CAN的特性:

- 采用双线差分信号,两根线构成总线,CAN High与CAN Low,这两根线之间的电位差可以对应两个不同的逻辑状态进行编码
- 静态时均是2.5V 左右,此时状态表示为逻辑1, 也可以叫做隐性位,用CAN_H 比CAN_L 高表示逻辑0 ,称为显性位,此时通常电压值为CAN_H = 3.5V 和CAN_L= 1.5V,竞争时显位优先


CAN的特性:

● 使用<mark>双绞线</mark>作为总线介质时,总线长度<=40米, 传输速率可达1Mbps

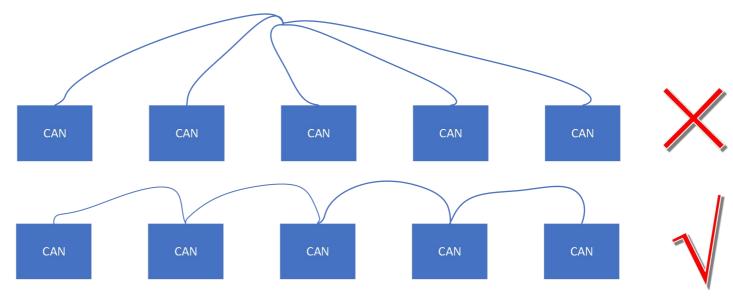
位速率 kbps	1000	500	250	125	100	50	20	10	5
最大距 离m	40	130	270	530	620	1300	3300	6700	10000

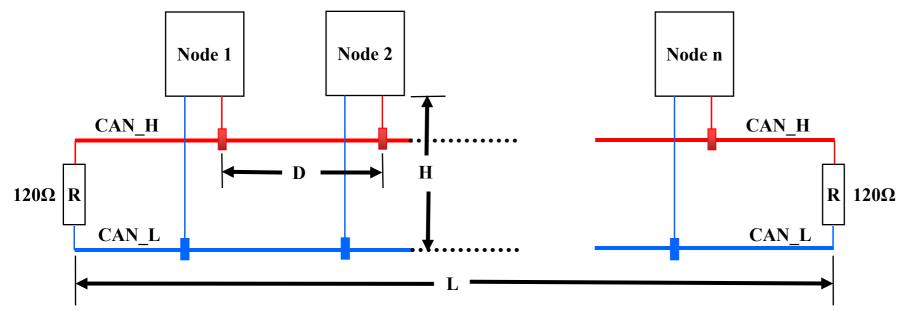

CAN的特性:

协议本身对节点的数量没有限制,实际应用中节点数目受网络硬件的电气特性所限制,总 线上节点的数量可以动态改变,广播发送报文,报文可以被所有节点同时接收

CAN的特性:

- 多主站结构
- 每个报文的内容通过标识符识别,标识符在网络中是唯一的
 - 标识符描述了数据的含义
 - 某些特定的应用对标识符的分配进行了标准化
- 根据需要可进行相关性报文过滤


CAN的拓扑结构:


● 总线长度L: 最大40m

● 支线长度H: 最大0.3m

● 节点距离D: 最大40m

● 终端电阻R: 120Ω

Kinco步科

让中国制造成为全球顶级制造

CAN的数据帧:

- 标识符(CAN Identifier)+8字节数据
- 标准CAN 的标识符长度是11 位,而扩展格式CAN 的标识符长度可达29 位。CAN 协议的 2.0A 版本规定CAN 控制器必须有一个11 位的标识符,同时在2.0B 版本中规定CAN 控制器 的标识符长度可以是11 位或29 位。遵循CAN2.0B 协议的CAN 控制器可以发送和接收11 位标识符的标准格式报文或29 位标识符的扩展格式报文。如果禁止CAN2.0B,则CAN 控制器只能发送和接收11 位标识符的标准格式报文,而忽略扩展格式的报文结构但不会出现错误
- CAN本身并不完整,没有定义CAN 报文中的 11/29 位标识符、8 字节数据的使用。

CAN I	dentifier	DLC	Data								
0	1		0	1	2	3	4	5	6	7	
XX 8		8	XX	XX	XX	XX	XX	XX	XX	XX	

常见的CAN应用层协议

名称	波特率	规格	适用领域
SAE J1939-11	250k	双线式、屏蔽双绞线	卡车、大客车
SAE J1939-12	250k	双线式、屏蔽双绞线、12V 供电	农用机械
SAE J2284	500k	双线式、双绞线(非屏蔽)	汽车 (高速:动力、传动系统)
SAE J24111	33.3k、83.3k	单线式	汽车 (低速:车身系统)
NMEA-2000	62.5k、125k、250k、 500k、1M	双线式、屏蔽双绞线 供电	船舶
DeviceNet	125k、250k、500k	双线式、屏蔽双绞线 24V 供电	工业设备
CANopen	10k、20k、50k、125k、 250k、500k、800k、1M	双线式、双绞线 可选 (屏蔽、供电)	工业设备
SDS	125k、250k、500k、1M	双线式、屏蔽双绞线 可选(供电)	工业设备

CANopen概述

什么是CANopen?

- CAL (CAN Application Layer) 协议是目前基于 CAN 的高层通讯协议中的一种,最早由 Philips 医疗设备部门制定。
- CAL 提供了所有的网络管理服务和报文传送协议,但并没有定义通讯对象的内容或者正在通讯的对象的类型(它只定义了 how,没有定义 what)。而这正是 CANopen 切入点。
- CANopen 是在 CAL 基础上开发的,使用了 CAL 通讯和服务协议子集,提供了分布式控制系统的一种实现方案。CANopen是CAN的一种应用层协议。
- CANopen 的核心概念是设备对象字典(OD:Object Dictionary),在其它现场总线(Profibus,Interbus-S)系统中也使用这种设备描述形式。
- 注意:对象字典不是 CAL 的一部分,而是在 CANopen 中实现的。
- CANopen协议是免许可证的,任何组织和个人都可以开发支持CANopen协议的设备而不用支付版税

CANopen概述

CANopen网络模型

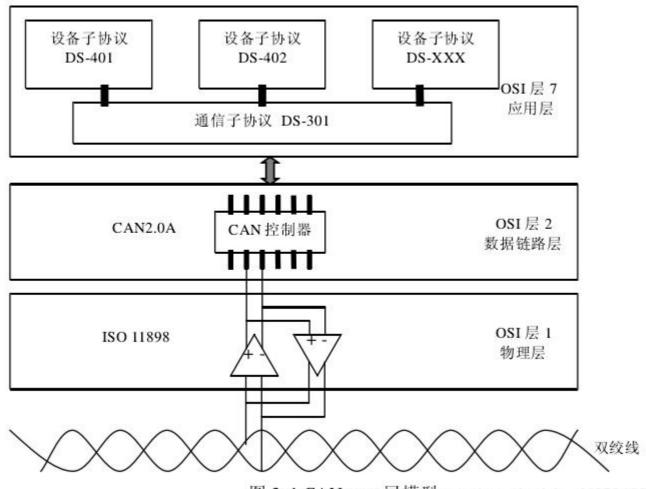


图 2.1 CANopen 层模型 g.csdn.net/webxin_41600109

CANopen概述

CANopen常见规范:

- CANopen协议是CAN-in-Automation(CiA)定义的标准之一,在欧洲,CANopen协议被认为是在基于CAN的工业系统中占领导地位的标准。大多数重要的设备类型,例如数字和模拟的输入输出模块、驱动设备、操作设备、控制器、可编程控制器或编码器,都在称为"设备描述"的协议中进行描述;"设备描述"定义了不同类型的标准设备及其相应的功能。
- 依靠CANopen协议的支持,可以对不同厂商的设备通过总线进行配置。

```
CiA 401: CANopen profile for generic I/O modules - 通用 I/O 单元
```

CiA 402: CANopen profile for drives and motion controllers - 驱动和运动控制单元

CiA 404: CANopen profile for measuring devices and closed-loop - 测量和闭环控制

CiA 405: CANopen profile for IEC 61131-3 programmable devices – PLC 可编程设备

类

CiA 406: CANopen profile for rotary and linear encoders - 转动和线性编码

CiA 408: CANopen profile for fluid power devices -液体动力设备

CiA 411: CANopen profile for inclinometer - 倾斜仪

CiA 412: CANopen profile for medical devices - 医疗设备

CiA 414: CANopen profiles for weaving machines - 纺织机

CiA 415: CANopen profile for asphalt paving machines - 沥青铺路机

CiA 416: CANopen profile for building doors - 楼宇门禁

CANopen对象词典

Object Dictionary (OD 对象字典):

• 对设备的操作基于"Object Dictionary",所有的参数、参数值和功能都是通过16位index和8位sub-index组成的地址来访问和存取。通俗的理解就是CANopen通讯的地址。

名称	Index	Sub_Index	Bits	属性	含义
Controlword	6040	00	10	RW	设备状态控制字
Modes of Operation	6060	00	08	RW	工作模式
Target_position	607A	00	20	W	目标位置

- CANopen网络中每个节点都有一个对象字典。对象字典包含了描述这个设备和它的网络行为的所有参数。
- 一个节点的对象字典(包含通讯功能、通讯对象、与设备相关的对象以及对象的缺省值等)是在电子数据文档(EDS: Electronic Data Sheet)中描述或者记录在纸上。

CANopen对象词典

Object Dictionary (OD 对象字典):

- CANopen对象词典的通用结构
- 对象字典中描述通讯参数部分对所有CANopen设备(例如在OD中的对象是相同的,对象值不必一定相同)都是一样的。

CANopen 对象字典通用结构

	索引		对象
	0000		Not used
0001	(4))	001F	静态数据类型 (标准数据类型,如 Boolean,Integer 16)
0020		003F	复杂数据类型 (预定义由简单类型组合成的结构如 PDOCommPar, SDOParameter)
0040	-	005F	制造商规定的复杂数据类型
0060	(-))	007F	设备子协议规定的静态数据类型
0080	2	009F	设备子协议规定的复杂数据类型
00A0	-	0FFF	Reserved
1000	32	1FFF	通讯子协议区域 (如设备类型,错误寄存器,支持的 PDO 数量)
2000	34	5FFF	制造商特定子协议区域
6000	32	9FFF	标准的设备子协议区域 (例如"DSP-401 I/O 模块设备子协议": Read State 8 Input Lines 等)
A000	4.	FFFF	Reserved

CANopen通讯标识符

Communication Object Identifier (COB_ID)

- 通讯标识符
- CAN ID—>CANOPEN COB ID
- 每个CANopen帧都以COB-ID开头,COB-ID是数据帧的唯一标识符
- COB_ID包括功能段(FUNCTION)和地址段(NODE-ID)
- Node-ID由系统集成商定义,例如通过拨码开关设置。Node-ID范围是1~127(0不允许被使用)
- COB_ID越小报文优先级别越高。CANopen的COB_ID范围从0-77F。

bit	10			bit7	bit6				bit	0
	FUNCTION					NOD	E-ID			
I I						(1~1	27站点)	I	

СО	B_ID	DLC	Data								
0	1		0	1	2	3	4	5	6	7	
XX 8		XX	XX	XX	XX	XX	XX	XX	XX		

谢 謝 Thank you

Kinco步科

聚焦行业与客户深度链接

www.kinco.cn sales@kinco.cn