

FD5 series AC servo system User mannal

Kinco Electric (shenzhen) Ltd. en.kinco.cn

Preface and Product Confirmation

Thank you for using Kinco FD5 series of servo products.

FD5 series AC servo is an economical product launched by Kinco for the general servo market, with a power range between 200W to 3KW. The new generation servo products support CANopen, EtherCat, Modbus, Profinet and other communication protocols. The servo products can be widely used in logistics, 3C electronics, printing and packaging, textile machinery, woodworking machinery, lithium batteries and new energy automobile industry. Please read the manual carefully and follow the operating instructions, it can help you set up the drive correctly and make the drive perform optimally.

The accessories of different models of Kinco FD5 series drives are different. We recommend that you confirm the product carefully before use.

Confirmation

- Please confirm whether the product is damaged during transportation
- Please confirm the motor model, drive model, and motor wiring model are consistent with the model you ordered according to the nameplate information on the drive and motor.
- Please confirm whether the terminal accessories of the drive is complete, and the motor oil seal and keys are complete on the drive.

Model	Accessories with quantity
FD425-PA-000 FD425-CA-000	Main power terminal (including auxiliary wiring tools)*1, D-sub36P plug*1, certificate*1, service guide*1, desiccant*1
FD425-LA-000 FD435-CA-000 FD435-LA-000	
FD435-LA-000 FD435-PA-000	4P power line terminals*1, 9P main power terminals (including auxiliary wiring tools and short wires)*1, D-sub36P plug*1, certificate of conformity*1, service guide*1,
FD625-CA-000 FD625-LA-000	desiccant*1
FD625-PA-000	

If there is any problem with any of the above, please contact Kinco or your supplier to solve it.

Identifications Description

Danger

Wrong operation could lead death or serious injury.

Warning

Risk of minor injury or serious property damage.

Other Identifications

Attention

May cause equipment damaged or function disable

Remind

Suggestion, reminding, or references

Manual edition record

Version Chapter		Change content
2022-3-24	All	
2024-6-7	Chapters 5 to 10	 Correct the irregular numbering of tables and pictures in Chapters 5 to 10 Correct the errors in Table 6-2

Content

Preface and Product Confirmation	2 -
Confirmation	2 -
Identifications Description	3
Other Identifications	3
Manual edition record	
Content	4
Chapter 1 Servo system model and configuration description	9
1.1 Description of product model	9
1.2 Drive nameplate description	9
1.3 Motor model description	9
1.4 Motor nameplate description	10
1.5 Servo drive specifications	
Chapter 2 Servo system installation requirements and notes	
2.1 Driver installation	12
2.1.1 installation dimension	
2.1.2 Installation distance and direction	
2.1.3 Drive requirements	16
2.2 Servo motor installation	17
2.2.1 Installation requirements	
2.2.2 Environment conditions	
2.2.3 Caution	
2.2.4 Motor torque-speed characteristic curve	
Chapter 3 servo system interface and wiring	22
3.1 Drive description	22
3.2 External system connection	23
3.2.1 Wiring connection description	25
3.2.2 Drive EMC configuration description	25
3.2.3 Overload protection of servo	28
3.2.4 Common DC bus	

3.3 RS232 serial port	
3.4 External input and output connection (X1)	
3.4.1 Digital signal input	
3.4.2 Digital signal output	
3.4.3 Pulse instruction input	
3.4.4 Brake connection	
3.5 Encoder input (X2)	
3.6 Power port (X3)	
3.7 Bus communication interface (X4)	
Chapter 4 Digital panel operation	
4.1Panel operation	41
4.2 Panel operation instructions	
4.3 Easy Use Function	
4.3.1 Easy use operation step	
4.3.2 EASY operation flowchart	
4.3.3 tunE operation flow chart	
4.3.4 Reasons for the failure of tunning	
4.3.5 Tuning case	
4.4 Jog mode(Test run)	51
4.5 Error history (F007)	
Chapter5 KincoServo + user guide	52
5.1 Getting started	
5.1.1 Language	
5.1.2 Open and saving project files	
5.1.3 Starting communication	52
5.1.4 Node ID and baud rate	53
5.1.5 Objects (add, delete, help)	
5.2 Init save reboot	53
5.3 Firmware update	54
5.4 Read/write controller configuration	
5.4.1 Read setting from controller	
5.4.2 Write setting to controller	
5.5 Digital IO function	
5.5.1 Digital input	
5.5.2 Digital output	

5.5.3 Fast capture	
5.6 Scope	
5.7 Error display and error history	61
Chapter 6 Operation mode introduction	64
6.1General steps for starting a control mode	64
Step1: wiring	
Step 2: IO function configuration	64
Step 3: Set necessary parameters	60
Step 4: Save and reboot	
Step 5: Start operation	62
6.2 Velocity mode (-3, 3)	6
6.2.1 DIN Speed mode	
6.3 Torque mode(4)	68
6.4 Position mode(1)	69
6.4.1 DIN position mode introduction	6
6.4.2 Position table mode	
6.5 Pulse mode(-4)	7
6.5.1 Pulse mode setting steps	7
6.5.2 Other function	
6.5.3 Electronic gear ratio switching (expert mode)	7
6.5.4Master-slave mode	
6.6 Full closed loop mode	7
6.6.1Full closed loop control operation steps	7
6.7 Homing mode(6)	8
6.80ther functions	8
6.8.1 Limit function	
6.8.2 Motor brake control	
6.8.3 Stop Mode Control	
6.8.4 Absolute encoder motor configuration	9.
hapter 7 Performance regulation	
7.1 Auto-tuning	
7.2Auto-tuning test operation method	
7.2.1 Auto-tuning function related object parameters	
7.2.2Introduction to the operation of digital tube key and upper computer software self-tuning method	
7.2.3Problems and adjustments with auto-tuning	

7.2.4Adjustment after auto-tuning	
7.3 Manual tuning	
7.3.1Tuning of the velocity loop	
7.3.2 Position loop tuning method	
7.4 Gain switch (Pro mode)	
7.4.1 Gain switching method	
7.5 Other factors affecting performance	
Chapter 8 Alarm Investigation	
Chatper 9 Servo panel parameter list	
Chapter 10 Communication	
10.1 RS232 communication	
10.1.1 RS232 hardware interface	
10.1.2 RS232 communication cable	
10.1.3 RS232 transport protocol	
10.1.4 RS232 Data protocol	
10.2 RS485 Communication	
10.2.1 RS485 hardware wiring	
10.2.2 RS485 communication parameters	
10.2.3 MODBUS RTU communication protocol	
10.2.4 Communication troubleshooting measures	
10.3 CANopen Bus communication	
10.3.1 CANopen bus communication hardware description	
10.3.2 CANopen bus communication software description	
10.3.3 CANopen Bus communication settings	
10.3.4 Interpolation mode based on CANopen	
Appendix 1: Braking Resistor Selection	
Appendix II: List of Common Object Parameters	
Mode and control (0x6040)	
Measurement data	
Target (0x607A)	
Multi-segment position/multi-segment velocity $(0x2020)$	
Performance object (0x6065)	
Homing control (0x6098)	
Velocity loop parameters (0x60F9)	

Position loop parameters (0x60FB)	142
Input/output port parameter (0x2010)	143
Pulse input parameters $(0x2508)$	145
Parameters for storage (0x2FF0)	145
Error code (0x2601)	146
Stop mode	147
Other parameter	148

Chapter 1 Servo system model and configuration description

1.1 Description of product model

*notice: FD425-DF-000(AC220 5A)is designed for 1KW servo motor

Figure 1-1 Drive naming rules

1.2 Drive nameplate description

Figure 1-2 Drive nameplate description

1.3 Motor model description

Figure 1-3 Motor naming rules

1.4 Motor nameplate description

Figure 1-4 Motor nameplate description

1.5 Servo drive specifications

Model			FD425-□A-000	FD425-□F-000	FD435-□A-000	FD625-□A-000	
Power Power supply		1PH,200-240VAC±10% 50/60Hz±3HZ (750W 7A) (200W 3A)		1PH,3PH, 200-240VAC±10% 50/60Hz±3HZ 14.0A	3PH, 380-415VAC±10% 50/60Hz±3HZ 12.0A		
	Logic 1	power supply	No separate l	ogic power supply	200-240VAC±10%	50/60Hz±3HZ 0.5A	
Power		um continuous current (rms)	2A(200W) 3.1A(400W) 3.9A(750W)	5A	10A	7A	
supply	PEAK c	urrent (PEAK)	7Ap(200W) 14Ap(400W) 18Ap(750W)	18Ap	27.5Ap	25Ap	
	Fedback	signal	Single-loop commu	Photoelectric single-turn encoder; Single-loop communication type magnetoelectric encoder; Photoelectric multi-turn communication absolute value encoder;			
Ε	Dynamic l	oraking	20W limited power If the actual power	;	FD435 built-in 100Ω , 20W limit n external braking resistor is require ick start and stop)		
	amic brak absorption	ing voltage n point	DC380V±5V	DC380V±5V	DC380V±5V	DC680V±5V	
0	vervoltag	ge alarm	DC400V±5V	DC400V±5V	DC400V±5V	DC700V±5V	
Ur	ndervolta	ge alarm	DC200V±5V	DC200V±5V	DC200V±5V	DC400V±5V	
(Cooling n	nethod	Natural cooling Forced cooling				
Weight (K		KG)	0.881		1.5		
method Order smoothing method		Order control method		control control the 8-segment posi tings internal object paran			
		smoothing	Low-pass filtering (internal parameter setting) S-curve smoothing and filtering (internal parameter setting in 1 mode)				
		Pulse order method	Pulse + direction, CCW+CW, A phase + B phase				
Position contro Mode		Maximum input pulse frequency	Differential transmission mode: up too 4MHz, Open collector transmission mode: 500KHz				
		Electronic gear ratio	Setting range: Gear factor: -32768 ~ 32767, Gear divider: 1 ~ 32767, 1/50≤ Gear factor/Gear divider ≤50				
		Torque limit	Internal parameter setting				
		Feedforward gain	0~100.0% (Set by internal parameter)				
		Position loop sampling frequency	2KHz				

Kinco FD5 AC series servo driver user manual Chapter 1 Servo system model and configuration description

NINCO FD5 AC		o driver user manual Chapter I Servo system model and configuration description		
	Order control method	Use DIN signals to control 8 segment speeds Communication setting internal object parameter control		
Speed control mode	Order smoothing method	Low-pass filter (Set by internal parameter)		
	Speed limit	Set by internal parameter		
	Torque limit	Set by internal parameter		
	Speed loop sampling frequency	8KHz		
	Order control method	Communication setting internal object parameter control		
Torque	Order smoothing method	Low-pass filtering (internal parameter setting)		
Control Mode	Speed limit	Set by internal parameter		
	Current loop sampling frequency	16KHz		
	Input specification	7 digital inputs, with COM1 terminal for PNP(high level valid 12.5-30V) or NPN (Low level valid $0 \sim 5V$) connection		
Digital Input	Input funciton	Define freely according to requirement, supporting following functions: Driver enable, driver fault reset, driver mode control, speed loop proportional control, positive limit, negative limit, homing signal, reverse command, internal speed section control, internal positive section control, quick stop, start homing, active command, switch electronic gear ratio, switch gain, Position table function, clear pulse function		
		5 Digital output, maximum voltage DC30V, differential output of OUT1 and OUT2, maximum output		
Digital output	Output specification	current100mA, single-ended output of OUT3 ~OUT5, maximum output current of 20mA, and motor OUT2 brake output controlled by relay.		
- 18.000 - m.t.m.	Output function	Define freely according to requirement, supporting following functions: Driver ready, driver fault, position reached, motor zero speed, motor brake, motor speed reached, Z signal, maximum speed obtained in torque mode, motor lock, position limiting, reference found. Multstage position.		
Encoder signal of	output funciton	Output 5V motor A, B, Z signal, frequency division output range 0 ~ 65536; For multi-axis synchronization, the maximum output frequency is 5MHz		
Protectional function		Overvoltage protection, Undervoltage protection, Motor overheat(I2T)protection, Shorts protection, Drive overheat protection and etc.		
RS232		RS232(PC connecting method: RS232 serial to Mini-USB Port)		
RS485		MAX Support 115.2KHz baud rate, you can use Modbus RTU protocol to communicate with the controller		
CANopen		MAX support 1MHz baud rate, you can use Modbus RTU protocol to communicate with the controller		
EtherCAT		Support CoE (CiA402 protocol) and CSP/CSV/PP/PV/PT/HM mode, the communication rate is 100Mbps.		
Profinet		Support message 1,message 3,message 111,technology object,non-cyclic data reads and writes,etc		
		Note: $\Box = L$: RS232, RS485		
		□=C: RS232、CANopen		
		$\Box = E: RS232, EtherCAT$		
□=P: RS232、Profinet				

Chapter 2 Servo system installation requirements and notes

2.1 Driver installation

2.1.1 installation dimension

Figuire 2-1 FD425-DA Product installation drawing

Kinco FD5 AC series servo driver user manual Chapter 2 Servo system installation requirements and notes

Figuire 2-2 FD425-□F product installation drawing

Figuire 2-3 FD435-□A Product installation drawing

Figure 2-4 FD625-□A Product installation drawing

2.1.2 Installation distance and direction

Please install the servo drive vertically and drill holes according to the Hole Position for Fixation, There should be an installation gap of more than 20mm between two drives. There should be a gap of more than 20mm between the first and last two drives and the wall or cabinet.

FD425 use passive cooling method. There is no fan in the drive. When installing, please reserve enough space for heat dissipation.

Figure 2-5 FD425 installation direction and requriement

Figure 2-6 FD435/625 installation direction and requriement

Danger!

- Please make sure that the drive is installed securely and the screws are tightened to prevent the drive from falling and hurting people during use.
- Beware of electric shock :
 - The power cable must be installed to the plug (X3).
 - Turn off the power when connecting cables.
 - Touching live parts can cause serious injury and possibly death.
- When using this product, it must be installed in the electric box, and all protective measures have been activated.
- In the event of maintenance, repair, cleaning work and longtime shutting down, beware before touching live parts:
 - Turn off power to electrical equipment with the power switch and prevent it from turning on again
 - After the power is turned off, check the indicators on the front panel of the unit. If the light is off, you can touch the drive.
 - When installing, avoid any foreign objects entering the servo drive. Conductive or combustible foreign objects such as screws, metal chips, etc. entering the servo drive may cause fire and electric shock.
 - For safety reasons, please do not use damaged servo drives and servo motors.
 - Drive and motor power cables, brake cables and encoder cables must be fixed and not stretched excessively.
 - The servo drive must be grounded.

2.1.3 Drive requirements

- Please ensure that this document is provided to design engineers, installers, and persons responsible for commissioning and using machine or system of this product.
- Please ensure that the requirements of this document are always followed. And please consider the instructions for other components and modules connected to this product.
- Please consider local legal requirements, as well as:
 - -Regulation and standards
 - -Regulations for testing organizations and insurance companies
 - -National standard specification

Transportation and storage requirements

- Please ensure that the product is not overburdened during transportation and storage, including
 - -Mechanical load
 - -Temperature that exceeding the limit value
 - -Moisture
 - -Corrosive gases
- Please use the original packaging for storage and transportation, the original packaging provides sufficient protection to avoid common problems.

KincoFD5AC series servo driver user manualChapter 2Servo system installation requirements and notesEnvironmental conditions

Environment	Conditions		
Working Temperature	0°C ~ 40°C (No ice)		
Working Humidity	5~95%RH (No condensation)		
Storage Temperature	-10°C ~ 70°C (No ice)		
Storage Humidity 5~95%RH (No condensation)			
Protection Level	IP20		
Install requirement	No sun and rain, no corrosive gas, no flammable gas, no oil and gas, dry and dust-free, and well ventilated (such as electrical cabinets)		
Altitude	There is no power limit when the altitude is below 1000m. When the working altitude is above 1000m, the power usage needs to be reduced by 1.5% for every 100m rise.		
VibrationUnder 5.9m/s2 10 ~ 60Hz (Do not connect at the resonance point)			

Table 2-1 Environment requirements

Technical requirements

In order to use the product correctly and safely, the following requirements should be always observed:

- Operation of the product in accordance with the relevant safety regulations is permitted only if the connection and environmental conditions specified in the product technical data and the technical requirements of all other connected components comply with the product specifications.
- Please follow the instructions and read warnings in this document carefully. <u>Operator requirements</u>
- This product may only be operated by an electrical engineer familiar with the following regulations:
 - -Installation and operation of electrical control systems
 - —Applicable regulations for safe operation of engineering systems
 - -Applicable regulations for accident prevention and occupational safety
 - —User manual for the product

2.2 Servo motor installation

2.2.1 Installation requirements

Danger!

- Please install it indoor of no rain and direct sunlig
- Please do not use this product in the corrosive environment (Hydrogen sulfide, Sulfurous acid, Chlorine, Ammonia, Sulfur, Chlorinated gas, Acid, Alkaline, Salt, etc), flammable gas, combustible and etc.
- Occasion (without Grinding fluid, Oil mist, Iron powder, cutting and etc.)
- Occasion (good ventilation, no Moisture, oil and water, no heat source such as stove.)
- Occasion which is easy to be checked and cleaned.
- Occasion without vibration.
- Please do not use motor in the closed environment.
- For installation spacing, please follow the requirements of this manual. Using life of motors depend on working environment.
- Please use screws with washers when installing the motor on the flange, otherwise the paint on the surface of the motor may be scratched off.

2.2.2 Environment conditions

Table 2-2 Environment conditions

Environment	Conditions		
Working Temperature	-20°C ~ 40°C (no ice)		
Working humidity Under 90%RH (no condensation)			
Storage temperature $-20^{\circ}\text{C} \sim 70^{\circ}\text{C}$ (no ice)			
Storage humidity	5~95%RH (no condensation)		
VibrationRunning: less than 49m/s2(5G)、Stopping: less than 24.5m/s2(2.5G)			
Collision Less than 98m/s2 (10G)			
Protection level IP65, shaft end: IP54 (Shaft end with oil seal: IP54, without oil seal: IP50)			
Altitude Highest altitude: 4000m, When the working altitude is above 1000m, the power usa reduced by 1.5% for every 100m rise.			

2.2.3 Caution

Table 2-3 Precautions

Item	Description			
Anti-rust treatment	Please wipe the "rust inhibitor" on the servo motor shaft first, and then do the relevant anti-rust treatment.			
Installation	 Improper installation will cause damage to the motor encoder. Please note the following during installation: When installing pulleys on servo motor shafts with keyways, use screw holes at shaft ends. In order to install the pulley, first insert the double-headed nail into the screw hole of the shaft, use a washer on the surface of the coupling end, and gradually lock the pulley with a nut. For the servo motor shaft with keyway, use the screw hole on the shaft end to install. For shafts without keyways, frictional coupling or similar methods are used. When removing the pulley, the pulley removal device is used to prevent the bearing from being strongly impacted by the load. To ensure safety, install a protective cover or similar device in the rotating area, such as a pulley mounted on the shaft of the serve. 			
Centring	the shaft. When connecting with the machine, please use the coupling, and keep the axis of the servo motor in a straight line with the axis of the machine. When installing the servo motor, make it meet the centering accuracy requirements as shown on the left. If the centering is not sufficient, it will cause vibration, which may sometimes damage bearings and encoders.			
Install direction	The servo motor can be installed in the horizontal or vertical direction.			
Oil and water solution	 When used in places with water drops, please use it on the basis of confirming the protection level of the servo motor. (except for the shaft through part) Specify servomotor with oil seal for use in places where oil droplets will drip into the shaft through part. Conditions of use of servo motor with oil seal: Please ensure that the oil level is lower than the lip of the oil seal when using. Please use under the condition that the oil seal can keep the oil spray degree good. When the servo motor is installed vertically, please pay attention to avoid oil accumulation on the lip of the oil seal. The motor bearing comes with double-sided dust proof effect, and the assembly of oil seal will increase the loss of the motor and lead to the decrease of the motor efficiency. If it is not necessary to install oil seals, do not install oil seals. Before assembling the oil seal, please ensure that the installation hole slot and the oil seal are free of debris, oil, dust, etc. During assembly, please fill the oil seal seal lip with high temperature grease (recommended to use HP-R grease of the Great Wall, temperature resistance 180 degrees) to strengthen the lubrication and temperature resistance performance, and increase the sealing and waterproof effect of the oil seal. When paying attention to water and oil resistance, the oil seal has a self-tightening spring side (that is, the side with a groove) towards the motor installation. Please refer to the following steps to install the oil seal correctly. Evenly apply high temperature lubricating oil to the sealing ring of the oil seal lip. the oil seal has a groove side facing inward, ensure that the oil seal is perpendicular to the machine shaft, use 			

Kinco FD5 AC series servo driver user manual Chapter 2 Servo system installation requirements and notes

KINCO FDJ AC S	terres servo driver user manual chapter 2 servo system installation requirements and notes
	a suitable sleeve to push the oil seal into the cavity.
	3. After successful installation, check whether the oil seal is tilted. The oil seal needs to fit with the motor
	bearing cover, and the lip of the oil seal needs to be completely closed to ensure the tightness of the oil seal.
Cable	Please do not make cable bending or pull the cable. When using it, please do not make it too tight.
	In terms of connectors, please note the following:
	•When connectors are connected. please make sure there is no foreign body such as trash or mental slices.
	•When connectors are connected into servo motors, please connect to one side of servo motor's main circuit
	cable and make sure ground cable of main cable connecting stably. If operators first connect one side of encoder cable, then, encoder may have some faults because of voltage difference between PEs.
	◆During the process of wiring, please make sure pin arrangement is correct.
Connector	•Connector is made of resin. Please do not add pressure to avoid damage of connectors.
	• When handling operations is done (cables are connected), please hold main body of servo motors. If operators just hold cable to handle, it may cause connectors damage or make cable cut off.
	•If operators use bend cable, please do not add pressure to connectors during the processof wiring. If pressure
	is added to connectors, it will cause connector damage.

2.2.4 Motor torque-speed characteristic curve

2.2.4.1 200W Motor Torque-Speed character curve

2.2.4.2 400W Motor Torque-Speed character curve SMC60S-0040-30 K-5LSU 400W

SMC60S-0040-30 K-5LSU

SMG60S-0020-30 K-5LSQ

(-5LSQ 200W

400W

2.2.4.4 1000W Motor Torque-Speed character curve

SMG130D-0100-10 K-4LKG 30

1.5kW

1kW

2.2.4.6 2000W Motor Torque-Speed character curve

2.2.4.7 3000W Motor Torque-Speed character curve

Chapter 3 servo system interface and wiring

3.1 Drive description

Figure 3-1 FD425 Drive appearance

3.2 External system connection

Figure 3-4 FD435 external connection

Figure 3-5 FD625 external connection

Table 3-1 External system installation description

Electric equipment	Function
Molded case circuit breakers (MCCB)	In the event of overcurrent, short circuit, or undervoltage, the circuit breaker automatically shuts off the power supply, thus protecting the circuit and drive equipment from damage. Note that the protection parameters that match the drive parameters are set.
Noise filter (NF)	Effectively filter out external interference and improve the anti-interference ability of power supply circuit.
Magnetic contactor (MC)	Use the air ac electromagnetic contactor to turn off the power supply and install the surge suppressor recommended by the manufacturer of the electromagnetic contactor to effectively prevent the reverse ELECTRO motive force.
CHARGE	Charging indicator light will not go out immediately after the power is cut off due to the charging capacitor in the internal circuit of the drive. Please make sure that the charging indicator is off or the voltage value of the dc bus voltage of the drive is below 36V before contacting the power terminal

Table 3-2 Recommended circuit breaker models

Servo drive models		Recommended breaker	
Servo arrve models	Models	Specifications	Manufacturer
FD425-□A	NXBLE-32-2P-C6	230V~(1P+N, 2P), 6A	
FD425-□F	NXBLE-32-2P-C10	230V~(1P+N, 2P), 10A	CHNT
FD435-□A	NXBLE-32-2P-C20	230V~(1P+N, 2P), 20A	CIINI
FD625-□A	NXBLE-32-4P-C16	400V~(3P、3P+N、4P), 16A	

Table 3-3 Recommended noise filter models

Comro duivo no dolo	Recommended noise filter			
Servo drive models	Models	Specifications	Manufacturer	
FD425-□A	TY440S-16FT	Single phase 120/250VAC, 16A		
FD425-□F	TY440S-16FT	Single phase 120/250VAC, 16A	Tyze	
FD435-□A	TY362M-16	Three-phase 275/480VAC, 16A	I I YZC	
FD625-□A	TY362M-16	Three-phase 275/480VAC, 16A		

Table 3-4 Recommended contactor models

Servo drive models	Driver supply voltage	Recommended contactor	
Serve arive models	Driver supply voltage	Contactor models	Manufacturer
FD425-□A	220V	CJX2-09	
FD425-□F	220V	CJA2-09	CHNT
FD435-□A	220V	CJX2-18	CHINI
FD625-□A	380V	CJX2-12	

Danger!

- FD435/FD625 drives are factory-configured with short wires connected to DC+/RB- and RB2, indicating the use of internal braking resistors (FD435 built-in 100Ω/20W; FD625 built-in 300Ω/20W), When the braking power exceeds the tolerable range of the internal braking resistor, the drive will alarm the braking resistor to be abnormal and display "0100". When the actual braking power exceeds the limit power, please disconnect the short circuit before connecting the external braking resistor. For the selection of external braking resistor, please refer to Appendix 1.
- It is forbidden to connect the power cable to the UVW terminal, and it is forbidden to connect the external braking resistor to the DC+(RB+) and DC- terminals. Before the drive is powered on, please check again whether the wiring is correct.
- There may be high voltage remaining in the drive after the power is cut off. Please confirm that the CHARGE indicator has gone out ten minutes after the power is cut off before overhauling the drive.
- The drive has a built-in dynamic braking circuit, which provides braking resistance through the internal resistance of the motor, which can effectively shorten the braking distance when the motor stops in an emergency.
- Do not drag the motor to run at high speed under the condition of power cut-off, the back electromotive force generated when the motor rotates will cause damage to the drive or motor.

3.2.1 Wiring connection description

Servo system connection refer Table 3-5. If the power cable is too long, the wire diameter needs to be increased appropriately.

Table 3-5 wiring specification table

Product model	FD425-□A/FD425-□F	FD625-□A	
Power cable diameter	Diameter:18~14AWG 0.8~2mm² Stripping length: 8-10mmDiameter:14~12AWG 1.75~3.3mm² Stripping length: 7-8mmDiameter:15~12AWG 1.5~3.3mr Stripping length 7-8mm		
IO diameter	Diameter 26~22AWG, 0.13-0.3mm ² , Stripping length 2mm		

In order to ensure the stable and safe use of the product, the following matters should be paid attention to when wiring the drive: • Pay attention to the fixation of the cable during the assembly process, and do not apply stress to the connector, otherwise the connector may be damaged.

•For the motor power line and encoder line, please use the cables provided by the manufacturer, calculate the connection distance of the equipment, and choose the shorter cables as possible.

◆The bending radius of the cable should be more than 5-10 times of the wire diameter to prevent the inner core of the cable from breaking after long-term use. The cable should avoid tension during use, and flexible cables should be considered in some drag chain applications.

 \bullet Usually, the wiring should be 8A/mm² according to the output current of the drive. When the power cable is longer than 30 meters, the wire diameter should be increased.

•Keep an interval of more than 30cm between power cables and signal cables. Avoid parallel laying as much as possible. Do not lay power cables and signal cables in the same slot or bundle them together.

3.2.2 Drive EMC configuration description

FD5 servo drive meets the relevant EMC certification specifications under the set conditions, but during the use of the product, it may be affected by the actual installation method, connection head and wiring status, resulting in different EMC test levels.

Warning

- In the civil environment, this product may cause interference which may degrade the reception quality of radio signals. Users shall take suppression measures if necessary to prevent interference.
- Products must be installed and certified by professionals who are familiar with safety and EMC requirements, and EMC engineers are responsible for ensuring that the products and systems produced comply with relevant laws.

Site condition

FD5 servo drivers must be installed in power grid overvoltage Class III and pollution Class 2 use sites.

Installation environmental condition

Figure3-6 FD425drive EMC setting conditions schematic diagram

Figure 3-7 FD435/625 drive EMC setting conditions schematic diagram

Note

1.Select cables with more than 85% shielding coverage in the diag	
	10 100
	am.

1.Select cables with	. Select cables with more than 65% shielding coverage in the diagram.				
Serial number	Cable name	Specification			
123410	Power cable	Shielded cable			
5	Brake cable	Shielded cable			
6	Encoder cable	Shielded cable			
(7)	Power cable	Shielded cable			
8	Input/Output signal cable	Shielded cable			
9	Communication cable	Shielded cable			

2. Please install the device in the control cabinet. The device should be installed on the same metal backplane with good electrical conductivity in the cabinet.

(1) <u>Reactor</u>

- To suppress the higher harmonic currents at the input power side, connect a reactor to the power input end of the driver. Figure 3-6 shows how to install a reactor.
- The reactor and the driver must be installed in the same metal backplane (electric galvanized steel) and the metal backplane must be well grounded.

(2) EMC noise filter

- To ensure that the product meets EMC standards, install an EMC noise filter at the power input terminal near the servo driver. For details about the noise filter model, see Section 3.2 External systems connection.
- The length of the cable between the output of the noise filter and the input power supply of the driver should be less than 30cm.
- The driver and filter are installed in the same metal backplane and the metal backplane is well grounded;
- Do not lay the input and output cables of the filter in the same slot or bind them together.
- The PE of the filter and the PE of the driver are single-point grounded. Do not connect PE in series to the ground pile.

Figure 3-8 EMC noise filter installation diagram

(3)Shielded layer

- Input and output signal cables, power cables, encoder cables and communication cables please use shielded cables.
- The shield of the encoder is clamped to the connector metal housing using metal cables.
- The shielding layer near the driver side of the power cable is locked to the driver PE screw using the U-shaped metal clip delivered with the product.
- If the power line and the encoder are not direct outlet solutions, it is necessary to peel the sheath layer at both ends of the connector and connect the shielded layer of the cable to the metal plate using a 360-degree shield clamp.

Figure 3-9 Driver side power cable/encoder cable shield layer 1* processing mode

Figure 3-10 Connector side power cable/encoder cable shield layer 2* processing method

(4)Grounding

- In order to prevent electric shock, be sure to ground the reactor, noise filter, driver;
- When multiple servo drivers are used, do not connect the ground cables of multiple servo drivers in series. Instead, use the single-point grounding method.
- The driver should be grounded with the shortest possible cable (>2mm²). If the ground cable is longer, increase the diameter of the ground cable (>4mm²).

3.2.3 Overload protection of servo

The driver calculates the heat by the output current, and implements the overload protection function for the driver and the motor. Overload protection means that when the driver and motor exceed the rated current, continuous use cannot be guaranteed, and only overload operation can be carried out under the overload protection characteristics.

Because the driver and the motor work at the same time, if the load rate of the motor reaches 100% first, the overload alarm protects the motor; When the load rate of the driver reaches 100% before the motor, the overload alarm protects the driver.

Standard motor has no temperature sensor for overheating protection, can not real-time monitoring of the actual temperature of the motor, if there are special conditions to detect the real-time temperature of the motor, please consult our sales staff.

\rightarrow

Note After the drive or motor IIT fault (fault code: 008.0) occurs, stop the drive and check the cause of the fault before running. If the fault fails to be checked and the drive IIT fault occurs again, it needs to stand for more than ten minutes, and then power on the drive after cooling. Otherwise, frequent overload failures may cause damage to the drive hardware!

Panel	Name	CANopen	Modbus	Туре	Data type	Detailed explanation
D1.02	Motor IIT actual utilization	2FF01010	2A00	RL	Unsigned8	The actual load rate of the motor
D1.04	Actual drive IIT utilization	2FF01110	2A01	RL	Unsigned8	The actual load rate of the drive

Figure 3-11 200W motor overload characteristic curve

Figure 3-12 400W motor overload characteristic curve

Figure 3-13 750W motor overload characteristic curve

3.2.4 Common DC bus

The braking energy generated during motor operation will be fed back to the drive bus capacitors, causing the drive bus voltage to rise. Under the condition that the multi-axis control is asynchronous (part of the motor is electric, part of the motor is braked), the common DC bus can keep the drive bus voltage more stable and realize the full utilization of energy.

Figure 3-14 FD425 common DC bus

Figure 3-15 FD435/FD625 common DC bus

3.3 RS232 serial port

Table 3-6 RS232 serial port

1	Pin number	Pin definition	Function
	3	TX	Drive sending data
	5	GND	Signal Ground
Note: The figure above is the definition of the 232 bus on the drive	2	RX	Drive receives data

Table 3-7 RS232 communication wiring method

Drive side pin name	Drive side pin number	PC side signal name	PC side serial port pin number	PC side pin difiniation
TX	3	Receive data (RXD)	2	0, 0, 5
RX	2	Send data (TXD)	3	
GND	5	Signal ground(GND)	5	

Users can purchase the FD5P drive Mini-usb 5p to DB9 female RS232 cable (Kinco order number:

PDC-USB-1(5)) If your computer does not have an RS232 serial port, you will also need to use a USB to DB9 serial cable to connect.

Figure 3-16 FD5 Drive 232 debug cable

 Purchase link of Kinco official Tmall store: https://detail.tmall.com/item.htm?spm=a212k0.12153887.0.0.4d7c687deB8shy&id=652422874770 &skuld=4707119953745

3.4 External input and output connection (X1)

Figure 3-17 FD5-LA/CA drive external input and output terminal pin diagram

Figure 3-18 FD5-LA/CA drive IO mouth definition default

Figure 3-19 FD5-PA drive external input and output terminal pin diagram

Figure 3-20 FD5-PA drive IO mouth definition default

\rightarrow

Note

- Figure 3-18 shows the X1 wiring of the FD5-LA/CA drive default IO function, Figure 3-20 shows the X1 wiring of the FD5-PA drive default IO function.More I/O functions can be defined by using the digital panel or the debugging software on the upper computer. For more details on IO features, see Chapter 5, Section 5.5.
- The FD5-PA driver compares the IO port of the FD5-LA/CA driver less DIN6 and DIN7, OUT4 and OUT5.
- The FD5-PA driver has no pulse input function.

Table 3-8 FD5-LA/CA driver external input and output terminal pin definition

Pin number	Signal ID	Signal name	Specifications
1	OUT1+		
3	OUT1-	Differential entruit	Open collector output
5	OUT2+	Differential output	Maximum voltage DC30V Maximum current 100mA
7	OUT2-		
9	OUT3		
11	OUT4	Single-ended output	Maximum voltage DC30V Maximum current 30mA
20	OUT5		Maximum current somA
13	COMO	OUT3, OUT4, OUT5 output common end	Digital output common end
15	VDD	Internal 24V power output	Internal 24V power output Voltage range +/-20%,
17	VEE	internal 24 v power output	Maximum current 200mA
2	COMI	Input signal common end	Input signal common end
4	DIN1		
6	DIN2		
8	DIN3		High level: 12.5V-30V
10	DIN4	Digital signal input	Low level: 0-5V
12	DIN5		MAX input frequency: 1KHz
14	DIN6		
16	DIN7		
19	/MA	Differential signal: MA,/MA,MB,/MB,MZ,/MZ	MA, MB, MZ, MA/, MB/, MZ/ RS422 differential signal input that supports 5V, the maximum pulse frequency is 4MHz, and the signal type is optional:
21	/MB	MAX supported frequency 4MHz,	(1)Pulse+Direction (PLS+DIR)
23	/MZ	Voltage range DC 3.3-5V	 ②Forward and reverse pulses (CW/CCW) ③A+B phase

27	MA+/(MA)	TTL Signal: MA+,MA-MB+,MB-,MZ+,MZ-, MAX supported frequency 500KHz, Voltage range DC 3.3-30V		
29	MA-		PulsesignalinputterminalsupportsTTL/differential signal.Signal type optional:①Pulse+Direction (PLS+DIR)②Forward and reverse pulses (CW/CCW)③A+B phase	
31	MB+/(MB)			
33	MB-			
35	MZ+/(MZ)			
18	MZ-			
22	+5V	Internal 5V power output	Output 5V A, B, Z differential signals, the frequency division output range is 0~65536; for multi-axis synchronization, the maximum output frequency is 5MHz	
24	GND			
26	ENCO_Z	Encoder signal output		
28	ENCO_/Z			
30	ENCO_B			
32	ENCO_/B			
34	ENCO_A			
36	ENCO_/A			

Table 3-9 FD5-PA driver external input and output terminal pin definition

Pin number	Signal ID	Signal name	Specifications
1	OUT1+		
3	OUT1-		Open collector output
5	OUT2+	- Differential output	Maximum voltage DC30V Maximum current 100mA
7	OUT2-	-	
9	OUT3	Single-ended output	Maximum voltage DC30V Maximum current 20mA
13	OUT3-	OUT3 output common end	Digital output common end
15	VDD		Internal 24V power output
17	VEE	Internal 24V power output	Voltage range +/-20%, Maximum current 200mA
2	COMI	Input signal common end	Input signal common end
4	DIN1		
6	DIN2		High level: 12.5V-30V
8	DIN3	Digital signal input	Low level: 0-5V
10	DIN4	-	MAX input frequency: 1KHz
12	DIN5	-	
22	+5V	- Internal 5V power output	
24	GND		Output 5V, A, B, Z differential signal, frequency division output range 0 ~ 65536; For multi-axis synchronization, the maximum output frequency is 5MHz
26	ENCO_Z		
28	ENCO_/Z		
30	ENCO_B	Encoder sizes l'autout	
32	ENCO_/B	Encoder signal output	
34	ENCO_A		
36	ENCO_/A		

3.4.1 Digital signal input

Table 3-10 Digital input wiring example

3.4.2 Digital signal output

Table 3-11 Digital output wiring example

Instruction	OUT1/OUT2 is open collector output, MAX voltage DC30V, MAX current 100mA OUT3-OUT5 is single-ended output, MAX voltage DC30V, MAX current 30mA The drive's internal 24V output can be used as a pull-up power supply When OUT3-OUT5 use PNP wiring, only one of them can be used	
Digital input wiring example① When the host computer is relay input	Driver 1 0 0 0 0 0 0 0 0 0 0 0 0 0	

<u>3.4.3 Pulse instruction input</u>

Table 3-12 Pulse input wiring example

Instruction	Pulse input is divided into ordinary pulse input channel and high-speed pulse input channel High-speed pulse input channel support RS422 differential signal, voltage range DC3.3-5V, the highest pulse frequency 4MHz Ordinary pulse input channel support TTL/ differential signal, voltage range DC 3.3- 30V, the highest frequency 500KHz
Ordinary pulse input wiring example① NPN Wiring method	24V 伺服驱动器 MA+ 27 29 31 MB+ 31 MB+ 33 MB+ 35 MZ+ 18

<u>3.4.4 Brake connection</u>

Table 3-13 Brake connection example

Instruction	The driver's default OUT2 is brake control port, and it needs to be connected to an external relay to control the motor brake The brake coil of the motor has no polarity. The 24V output power of driver X1 is not enough to control the brake, so an external 24V is needed as the brake power supply
Brake connection example	Driver 5 OUT2+ Relay 7 OUT2- Motor brake

Table 3-14 Motor holding brake power

Motor model	Motor power(W)	Brake power(W)
SMC60S-0020-30□BK-3LSU	200	7.6
SMC60S-0040-30□BK-3LSU	400	7.6
SMC80S-0075-30□BK-3LSU	750	11.5
SMG130D-0100-20□BK-4LKG	1000	
SMG130D-0150-20□BK-4LKG	1500	
SMG130D-0200-20□BK-4LKG	2000	12.2
SMG130D-0150-20□BK-4HKG	1500	13.2
SMG130D-0200-20□BK-4HKG	2000	
SMG130D-0300-20□BK-4HKG	3000	

*Note: The brake parameters of different encoder motors are consistent.

Note

The use of brake can ensure that the motor shaft can remain stationary in the state of de-enable or power failure. Please ensure that the lock gate has been opened before the motor operation. Do not use lock brake when the drive control motor shaft is running at high speed in non-emergency cases, otherwise it will cause the lock performance degradation or damage.

3.5 Encoder input (X2)

Table 3-15 Magnetoelectric encoder (MAK) pin definition

	Pin number	Pin name	Pin function
	1	+5V	5V power output positive terminal
/SD	2	GND	5V power output negative terminal
	3	CLOCK+	Clock signal
	4	CLOCK-	Clock signal
	5	SD	
	6	/SD	Serial data signal

Table 3-16 Optical encoder(YAK/VAK) pin definition

	Pin number	Pin name	Pin function
	1	+5V	5V power output positive terminal
/SD 6 5SD	2	GND	5V Power output negative terminal
	3	-	NC
$GND = \begin{bmatrix} 2 \\ - \end{bmatrix} \begin{bmatrix} 1 \\ - +5V \end{bmatrix}$	4	-	NC
	5	SD	
	6	/SD	Serial data signal

3.6 Power port (X3)

Table 3-17 FD425 power port instruction

	Port	Pin name		Pin function
		L1		Drive mains power input
		L2		Unidirectional line voltage 200 ~ 240VAC ±10% 50 ~ 60Hz
				±3Hz, (750W 7A), (200W 3A)
RB-		DC+ /RB+	DC+	DC bus input positive terminal
DC-	X3		RB+	External braking resistor terminal
		RB-		External braking resistor terminal
		DC-		DC bus input negative terminal
		U/V/W		Servo motor UVW phase line connection
		PE		Motor ground

Table 3-18 FD435 and FD625 power port description

	Port	Port Pin name		Pin function
	X3A	U/V/W		Servo motor UVW phase line connection
		PE		Motor ground
B V MOTOR		L1C/L2C		Logic power input
		LIC/L.	20	Singal-phase 200~240VAC±10%, 50/60Hz±3Hz, 0.5A
		R/S/T		FD435 power supply input : 1PH,3PH,200240VAC ±
				10%,50/60Hz±3HZ,14.0A
	VID			FD625 power supply input : 3PH, 380-415VAC ±
S SB0				10%,50/60Hz±3HZ,12.0A
	X3B	DC+	DC+	DC bus inpurt positive terminal
DC+ RB1		/RB1	RB1	When using the internal braking resistor, RB1 and RB2 are
8 RB2		RB2		shorted
RB-	RB-			When using an external braking resistor, first disconnect the short-circuit wire between RB1 and RB2, and connect the external braking resistor to RB1 and RB-
		DC-		DC bus input negative terminal

3.7 Bus communication interface (X4)

Table 3-19 RS485 Communication port pin definition
--

Model	RS485 plug pin definition	Driver end pin name	Driver end pin number	Connect the host computer signal
FD425-LA-000 FD435-LA-000		485+	5	TX+/A
FD625-LA-000	X4A	485-	4	TX-/B

Table 3-20 CAN communication port pin definition

Model	RS485 plug pin definition	Driver end pin name	Driver end pin number	Connect the host computer signal
FD425-CA-000 FD435-CA-000		CAN_H	1	CAN_H
FD625-CA-000		CAN_L	2	CAN_L

Note

The FD5-LA/CA driver has a built-in terminal resistor. When SW1 next to the X4 port is set to ON, the terminal resistor is turned on.

Chapter 4 Digital panel operation

4.1Panel operation

After the servo system is installed and properly wired according to the specifications and precautions, the servo drive can be set up for the specific application scenario.

Table 4-1 Panel operation instruction

	Digital Digita			
Number/dot/button	Function			
Dot ①	None			
Dot(2)	Used to indicate whether the data is positive or negative. Dot2 on refers negative and off refers positive.			
Dot3	 When setting parameters, it is used to distinguish the current object group from the address data in the object group; When displaying the internal 32-bit data in real time, it is used to display the upper 16 bits of the current 32-bit data; Indicates that the earliest error information in the error history is being displayed when the error history record in F007 appears at the display. 			
Dot④	When displaying and adjusting parameters in real time, it is used to indicate the data display format: HEX data when dot 4 is on and DEC data when dot 4 is off Dot 4 indicates that the latest error information in the error history is being displayed when the error history record in F007 appears at the display.			
Dot(5)	Dot 5 on indicates that the data modification is confirmed successful Dot 5 on indicates that the current displayed data is internal data Dot 5 blinking means the power section of the drive is working			
MODE	Switch function menu; When setting parameters, press briefly to switch the setting bit, press and hold to return to the last menu.			
SET	Enter menu; Check the values of the parameters; Confirm the setting to access the next step; When the internal 32 bit data appears at the display, press and hold to switch high/low 16 bit.			
	Press briefly increase the value slowly, press and hold increase the value rapidly; Switch data item.			
•	Press briefly decrease the value slowly, press and hold decrease the value rapidly; Switch data item.			
PL	Positive limit signal active			
nL	Negative limit signal active			
Pn.L	Positive and negative limit signal active			
FFF.F	The drive is not configured with the motor model			
Blinking	Error			

Note

Press SET setting determining, If the panel shows PErr means failure setting. The reasons could be:

1. The setting value is out of the setting range of the parameter.

2. The drive is in the enabled state, the parameters cannot be changed. You need to cancel the enable state first.

4.2 Panel operation instructions

Set drive parameters and monitor real-time data as follows:

Figure 4-1 Parameters Setting

4.3 Easy Use Function

Easy Use is designed to quickly set control ring parameters for users, eliminating the tedious steps of servo debugging, and the adjusted performance can meet most applications; In addition, an independent area is created to facilitate users to set commonly used important parameters.

4.3.1 Easy use operation step

Step 1: Confirm EASY flow parameters one by one. After the EASY process is executed, run the machine, and if the performance is ideal, there is no need to perform the tunE process. Otherwise, follow the tunE process

Step 2: The tunE process is the inertia measurement process. After the inertia is measured through the tn03, the drive changes the rigidity class (tn01) according to the tuning result.

Step 3: Please run the machine, if the performance is not ideal, and then modify the rigidity level step by step through tn01, please note that while adjusting, observe the machine performance.

Figure 4-2 Gain self-tuning process

Note

- Inertia measurement may cause the machine to vibrate. Please turn off the power or the drive immediately.
- Turning on the inertia measurement will make the motor shaft reciprocate within a small distance, please leave a certain mechanical space.
- After executing the EASY process, it is strongly recommended to perform the tunE process to measure the inertia and adjust the rigidity level.

4.3.2 EASY operation flowchart

Figure 4-3 EASY operation process

>

Note

The menu is exited automatically if there is no operation in 30s, and users have to start again. Entered data is valid immediately but must be saved via EA00.

Table 4-2 Easy parameters LED Parameter Default Description For a new factory drive, the motor model is 00, and the digital panel displays 3030. If the drive is connected to the correct motor, the motor model will be automatically recognized and saved by the drive. If there is no motor model in the drive, the digital panel will flash FFFF. Motor type EA01 For the drive that has been used, the drive will judge whether the connected motor is 404b the same as the previous one. If they are not the same, the digital panel will flash and display the FFFF/400.2 fault. Change the instruction type by modifying the first digit on the right, Note that changing the instruction type changes the working mode and the definition of the IO port. 0: Dual-pulse mode CW/CCW 1: pulse direction mode P/D 2: A/B phase control mode 8: upper computer communication control mode Command type EA02 1 Instruction type 0-2, corresponding to working mode -4. Instruction type 8, the working mode is controlled by communication, and the functions defined by DIN1, DIN2, DIN3 need to be cancelled. Gear Factor 1000 EA03 Used when EA02 is set to 0-2 Numerator By default, the display shows the values in decimal format. If the number is greater Gear Factor than 9999, the display is in hexadecimal format 1000 EA04 Denominator The meaning of each digit of the LED display from right to left. (1) Load type, influences the control loop. 0: No load 1: Belt drive 2: Ball screw (2) Application, influences the control loop. 1. load type 0: P2P 2.application 1: CNC 3. limit switch 2: Master / slave mode 4. alarm output (3) Limit switch. polarity EA06 0: Controller default 1001 1: Delete the limit switch function (4) Polarity of OUT5 0: Normally closed contacts 1: Normally open contacts Refer to chapter 6.7 EA07 Homing method Write "1" to save control and motor parameters. Write "2" to save control and motor parameters and reboot the servo. Write "3" to reboot the servo. EA00 Save parameters Write "10" to initialize the control parameters. After saving the parameters, the drive sets the control loop parameters according to the load type and application.

When EA02 is set to 0, 1 or 2, the default input and output functions are as follows:

Table 4-3 Default IO configuration related to EA02

		D 2000 1		
	CW/CCW	Pulse/Direction (default)	A/B phase	RS232 control
EA02	0	1	2	8
DIN1	Enable	Enable	Enable	
DIN2	Reset errors	Reset errors	Reset errors	
DIN3	Start homing	Start homing	Start homing	
DIN4	P limit+	P limit+	P limit+	P limit+
DIN5	P limit-	P limit-	P limit-	P limit-
DIN6				

Kinco FD5 AC series servo driver user manual

Chapter 4 Digital panel operation

DIN7	Home signal	Home signal	Home signal	Home signal
OUT1	Ready	Ready	Ready	Ready
OUT2	Motor brake	Motor brake	Motor brake	Motor brake
OUT3	Pos reached	Pos reached	Pos reached	Pos reached
OUT4	Zero Speed	Zero Speed	Zero Speed	Zero Speed
OUT5	Error	Error	Error	Error
		Work model: -4		Work model: 0

Note

Changing the EA02 may cause the IO function to change, so the actual IO input may unexpectedly activate the corresponding function of the drive. Therefore, when setting the EASY menu, it is recommended to disconnect the wiring of the X4

When EA02 is set to 0,1, or 2, the default input and output functions are as follows:

Figure 4-4 Pulse mode cable connection

When EA02 is set to8, the default input and output functions are as follows:

Figure 4-5 RS232 communication control mode wiring method

4.3.3 tunE operation flow chart

The tunE menu consists of self-tuning related functions and parameters based on inertia measurement. After the self-tuning is successful, the servo control loop adjustment can be simplified to adjust a single parameter (rigidity).

When the EASY process is completed, the driver selects the appropriate rigidity and inertia ratio defaults based on the load and application type in EA06.

If the ratio of inertia in the actual mechanical system is known, direct input can be made via tn02 (see Table 4-4). The inertia ratio does not need to be absolutely accurate, and the servo performance can be improved by adjusting the rigidity. However, by accurately measuring the inertia ratio, we can better adjust the control parameters to achieve multi-axis response matching. Therefore, it is of great significance to obtain an accurate ratio of inertia through the measurement of inertia.

The following flowchart and table details the tunE menu structure, setup steps, and variables.

Table 4-4 tunE parameters

1able 4-4 lu	nE parameters		
tn01	Stiffness	level of control stiffness from 0 to31 determines the bandwidth (BW) of the velocity loop and the position loop (see table 4-5). The larger the value, the greater the stiffness. If this parameter is too large, the gain will change excessively and the machine will become unstable. When setting tn01 via the up and down buttons on the panel, entered values are valid immediately, in order to ensure the input of small change steps	Belt: 10 Screw: 13
tn02	Inertia_ratio	Ratio of total inertia and motor inertia (unit: 0.1) for example 30 represent an inertia ratio of 3. This value becomes defaulted by the EASY procedure and measured by the inertia measuring function in the tunE menu (tn03). When setting tn02 by the panel up down buttons, the data will be valid immediately, to ensure the input of small change steps.	Belt:50 Screw:30
tn03	Tuning_method	 Writing 1 starts auto-tuning inertia measurement. The controller is enabled and the motor executes an oscillating motion for less than 1s. If tuning is successful, Tuning Method indicates a value of 1. The measured inertia is used to determine the Inertia Ratio. Stiffness is set to 4 to 12 depending on the inertia ratio. The control loop parameters are set according to Stiffness and Inertia Ratio. If the inertia measurement fails, Tuning Method indicates the fail-reason: 0: The controller could not be enabled by any reason. -1: Inertia cannot be measured due to too little motion or too little current. -2: The measured inertia result is outside the valid range. -3: The resulting Inertia Ratio value is greater than 250 (inertia ratio > 25). This is a possible result, but the control loop will not be tuned. -4: The resulting Inertia Ratio value is larger than 500 (inertia ratio > 50). This is an uncertain result. In the cases 0, -1, -2, -4 Inertia Ratio is set to 30, in the case -3 Inertia Ratio is set as measured, Stiffness is set to 7-10 In any fail case the control loop parameters are set to Inertia Ratio of 30 and the set Stiffness values. To make the measured Inertia Ratio of case -3 become effective, the value of tn02 must be confirmed by SET 	_
tn04	Safe_Dist	Inertia measuring distance (unit: 0.01 rev), for example 22 represents 0.22 motor revolutions. The maximum is 0.4 revolutions	22
tn00	Saving parameters	 Write "1" to save control and motor parameters. Write "2" to save control and motor parameters and reboot the servo. Write "3" to reboot the servo. Write "10" to initialize the control parameters 	-

Table 4-5 Tuning result description:

Tuning display	Tuning result description:
	1: The measurement result is correct and the inertia ratio is less than 25:1, the measurement of the inertia ratio result is valid, and the PID automatically adjusts according to the load inertia.
	-1: The speed amplitude is 1/4 of the set value or the current amplitude is less than 10DEC. The tuning result is invalid. It is recommended to increase the load detection operating range or initialize the rigidity re-detection.
500.0	-2: Indicates that the calculated inertia coefficient is too large or too small, and the measurement result is not within the normal range. The integral needs to be adjusted, the limit parameters need to be re-tuned, and the result is invalid.
<u> </u>	-3: The inertia ratio exceeds 25:1. The inertia ratio result is valid but does not automatically set the loop parameters.

$\Box\Box$	Ц

-4: The measured inertia ratio is over 300 times the range. Inertia ratio result is invalid.

Table 4-6 rigid grade table

Stiffness	Kpp0 [0.01Hz]	Kvp0 [0.1Hz]	Velocity feedback filter cut-off frequency[Hz]	Stiffness	Kpp0 [0.01Hz]	Kvp0 [0.1Hz]	Velocity feedback filter cut-off frequency[Hz]
0	70	25	18	16	1945	700	464
1	98	35	24	17	2223	800	568
2	139	50	35	18	2500	900	568
3	195	70	49	19	2778	1000	733
4	264	95	66	20	3334	1200	733
5	334	120	83	21	3889	1400	1032
6	389	140	100	22	4723	1700	1032
7	473	170	118	23	5556	2000	1765
8	556	200	146	24	6389	2300	1765
9	639	230	164	25	7500	2700	1765
10	750	270	189	26	8612	3100	1765
11	889	320	222	27	9445	3400	∞
12	1056	380	268	28	10278	3700	∞
13	1250	450	340	29	11112	4000	∞
14	1500	540	360	30	12500	4500	Ø
15	1667	600	392	31	13889	5000	Ø

When the setting for the stiffness or inertia ratio results in a Kvp value of greater than 4000, it isn't useful to increase stiffness anymore. For encoders with less than 80000PPR resolution, the maximum rigidity level is 22.

Note

Complete the EASY process before using the tunE menu feature;

The self-tuning process may cause mechanical jitter, please be ready to cut off the driver power at any time; In order to prevent unnecessary mechanical damage, please ensure that the motor has sufficient range of motion before performing the self-tuning function.

4.3.4 Reasons for the failure of tunning

- 1. Incorrect wiring
- 2. The motor model is incorrectly set
- 3. The pre-enable function is configured for the input port, but is disabled
- 4. The set motor bearing is subjected to too much friction or other external forces
- 5. There is a large mechanical gap between the motor and the load
- 6. Very low mechanical rigidity
- 7. The load inertia ratio is too large
- 8. Load flexible connection
- 9. Acceleration and deceleration is less than the viscous friction torque

4.3.5 Tuning case

Rigid connection setting case (such as lead screw, rack and pinion, connecting rod and other rigid transmission structure) Operation instructions:

1.Enter EA01 through the panel keys, and confirm that the motor model is correct.

2.Enter EA06 to set the tuning command type to 1002, which means that the axis operation mode is point-to-point positioning control, the motor adopts rigid transmission structure to connect the load, the positive and negative limits use the current settings, and the OUT2 is normally open.

3.Enter Tn04 to set the tunning distance, The default value is 0022, which means 0.22 revolutions of the motor. If the load displacement distance allows, you can set TN04 to 0040, which means that the setting distance is extended to 0.4 revolutions of the motor.

4.Set Tn03 to 1, Turn on auto-tuning. After the tuning is completed the tuning result will be

Displayed on the panel

5.Perform the next adjustment according to different tuning results. For details of manual adjustment, please refer to Chapter 7.3

a. The result is 1: indicates that the tuning is successful and the inertia ratio is valid. The equipment can be run repeatedly by command, and the rigidity level Tn01 can be adjusted step by step. When the response is slow during the operation, the rigidity level Tn01 can be increased.

b. The result is -1: Indicates that the inertia is too small and the tuning fails, and the inertia ratio is invalid. You can increase the tuning distance Tn04 and then re-tune. Under this tuning result, the rigidity level Tn01 can also be adjusted to check the running effect. If the adjusted rigidity cannot meet the requirements, please use manual adjustment.

c. The result is -2: Indicates that the inertia coefficient is out of range, causing the tuning to fail and the inertia ratio to be invalid. You can modify the speed loop integral limit parameters to re-tune. Under this tuning result, the rigidity level Tn01 can be adjusted to check the running effect. If the adjusted rigidity cannot meet the requirements, please use manual adjustment.

d. The result is -3: Indicates that the inertia ratio exceeds 25 times, and the inertia ratio result is valid. After the tuning is completed, run the device, and when the motor vibrates or whistles, please use manual adjustment. The rigidity level Tn01 can be adjusted when the running equipment has no vibration/howling.

e. The result is -4: Indicates that the inertia ratio exceeds 300 times, and the inertia ratio result is invalid. After the tuning is completed, run the device, and when the motor vibrates/whistles, please use manual adjustment. The rigidity level Tn01 can be adjusted when the running equipment has no vibration/howling.

6.After the adjustment is completed, enter EA00 to set 1 to store the adjustment result.

Flexible connection setting case (such as synchronous belt, elastic coupling and other flexible transmission structure with tension) Operation instructions:

1.Enter EA01 through the panel keys, and confirm that the motor model is correct.

2.Enter EA06 to set the tuning command type to 1001, which means that the axis operation mode is point-to-point positioning control, the motor adopts a flexible transmission structure to connect the load, the positive and negative limits use the current settings, and the OUT2 is normally open.

3.Enter Tn04 to set the setting distance. The default value is 0022, which means 0.22 revolutions of the motor. If the load displacement distance allows, you can set TN04 to 0040, which means that the setting distance is extended to 0.4 revolutions of the motor.

4.Set Tn03 to 1, Turn on auto-tuning. After the tuning is completed, the tuning result mark will be displayed on the panel.

5.Perform the next adjustment according to different tuning results. For details of manual adjustment, please refer to Chapter 7.3.

a. The result is 1: Indicates that the tuning is successful and the inertia ratio is valid. The equipment can be run repeatedly by using the command, and the rigidity level Tn01 can be adjusted step by step. When the response is slow during the operation, the rigidity level Tn01 can be increased.

b. The result is -1: Indicates that the inertia is too small and the tuning fails, and the inertia ratio is invalid. You can increase the tuning distance Tn04 and then re-tune. Under this tuning result, the rigidity level Tn01 can also be adjusted to check the running effect. If the adjusted rigidity cannot meet the requirements, please use manual adjustment

c. The result is -2: Indicates that the inertia coefficient is out of range, causing the tuning to fail and the inertia ratio to be invalid. You can modify the speed loop integral limit parameters to re-tune. Under this tuning result, the rigidity level Tn01 can be adjusted to check the running effect. If the adjusted rigidity cannot meet the requirements, please use manual adjustment.

d. The result is -3: Indicates that the inertia ratio exceeds 25 times, and the inertia ratio result is valid. After the tuning is completed, run the device, and when the motor vibrates or whistles, please use manual adjustment. The rigidity level Tn01 can be adjusted when the running equipment has no vibration/howling

e. The result is -4: Indicates that the inertia ratio exceeds 300 times, and the inertia ratio result is invalid. After the tuning is completed, run the device, and when the motor vibrates/whistles, please use manual adjustment. The rigidity level Tn01 can be adjusted when the running equipment has no vibration/howling

6. After the adjustment is completed, enter EA00 to set 1 to store the adjustment result.

4.4 Jog mode (Test run)

The jog mode can be used to test the basic operating condition of the motor. In the jog mode, the user can test whether the motor can rotate according to the set speed through the key and the digital tube display. The point mode is not affected by other operating modes or speed Settings, and the controller is in speed mode when running and runs at 30rpm.

Steps of Jog operation:

Step 1: Check all wiring is right, ESAY flow has been completed.

Step 2: Enter panel menu F006, address d6.40 appears, press \checkmark several times until d6.15 appears, press \blacktriangle several times until d6.25 appears (This step ensures that the up and down buttons work properly), then press SET again and the nixie tube will display 'Jog'.

Step 3: Press and hold \blacktriangle for positive direction or \forall for negative direction. The controller will become enabled automatically and the motor shaft will rotate with velocity Jog_RPM. Release \blacktriangle and \forall , to stop the motor shaft.

If in Step 3 for more than 20 seconds none of \blacktriangle or \lor was pressed, the Jog operation will quit and a new Jog operation needs to be started from Step 1 again.

 \rightarrow

Note

- The limit switch does not function in jog mode.
- To prevent unnecessary mechanical damage caused by excessive rotational speed, the default starting speed is 30rpm. You can change the starting speed (unit: rpm) when entering the F000 group d0.08.
- If the digital input function is configured to be pre-enabled, executing the point mode requires that the actual digital input or the simulated digital input be at the correct level, otherwise a pre-enabled alarm will be caused.

4.5 Error history (F007)

The drive can retain the last 8 historical errors. Enter F007, press SET and the error status (2601.00) will be displayed on the nixie. If 0001 is displayed, it indicates an extension error, and you can press SET again to display error status 2(2602.00). Access the entire history error by \blacktriangle or \blacktriangledown . In the nixie display area, counting from left to right, the third light indicates the earliest error, and the fourth light indicates the latest error. Some faults can be masked and written to historical errors. For details, see Section 5.7.

F007 LED display	Meaning
000.1	The current error code is the latest. And the current extension error, press SET to view the value of error status 2(2602.00)
02.00	The current error indicates that the actual trace error exceeds the allowable and is the earliest error code.
0100	The current driver brake resistance is abnormal. Neither the latest nor the earliest error.

Chapter5 KincoServo + user guide

This chapter contains information about how to use the PC software Kincoservo+

Figure 5-1 Main window of Kincoservo+

5.1 Getting started

5.1.1 Language

Language can be switched between English and Chinese via menu item Tools->Language.

5.1.2 Open and saving project files

Create a new project file via menu item File->New, or by clicking the button.

Open an existing project via menu item File->Open, or by clicking the button and selecting a .kpjt file

Save a project via menu item File->Save, or by clicking the button and saving as a .kpjt file

Note

The saved.kpjt project file only saves the Windows in the upper computer software, and cannot save the parameters in the drive.

5.1.3 Starting communication

Click menu item Communication->Communication settings. The following window appears:

сом		
СОМ	COM7 -	Refresh
Baud	38400 💌	
COM ID	127	OPEN

Figure 5-2 Communication setting

Select the right COM port (if it's not shown click the "Refresh" button), baud rate and COM ID (Node ID),

and then click the "OPEN" buton.

Once communication has been established with the controller, communication can be opened or closed by clicking the button

5.1.4 Node ID and baud rate

The drive station number can be set through the menu bar "Drive" -> "Drive Property". Table 5-1 note ID and baud rate

Panel address	Internal address	Туре	Name	Value	Unit
D5.01	100B.00	Uint8	Node_ID	1~127	DEC
D5.02	2FE0.00	Uint16	RS232_baudrate	Panel setting Baudrate 540 19200 270 38400 90 115200	Baud

Note

The device station number and baud rate take effect only after the control parameters are stored and the drive is restarted.

5.1.5 Objects (add, delete, help)

Open any window with an object list, move the mouse pointer to the object item and right click. Thefollowing selection window appears:

268000	uint16	Warning_Word		
606000	int8	Operation_Mode		
604000	uint16	Controlword	Add	
607A00	int32	Target_Position	Delete	
608100	uint32	Profile_Speed	Help	
608300	uint32	Profile_Acc	, incip	

Click Add and double click the required object from the Object Dictionary. The selected object is then added to the list. Click Delete. The selected object is removed from the list.

Click **Help** to read a description of the selected object in the **Object Dictionary**.

5.2 Init save reboot

Click Controller->Init Save Reboot. The following window:

Figure 5-3 Init save reboot

Click the corresponding item to finish the necessary operation.

Note

After initializing the parameters, you need to save the control parameters to save the default parameters in the drive.

5.3 Firmware update

In general, the firmware of the drive is always the latest version, but if the drive firmware needs to be updated for some reason, please go to the menu bar "**Controlle**r" -> "**Load Firmware** ".

Ks Load Firmware		
Current FW CRC:	·	Software Version
Load File	NULL	
Download		
Note:if the communi [Download] button,a		ownloading,please first power-on again,then press therwise will fail.

Figure 5-4 Load firmware

Click "Load File" to select the firmware file (.kinco), then click "Download" to start updating the drive firmware. After successful download, please click the menu bar "Drive" -> "Drive Properties" -> "Software Version" to determine whether the firmware download is successful.

N	Index	Туре	Name	Value Unit
0*	100000	uint32	Device_Type	HEX
1*	100800	String	Device_Name	String
2*	100900	String	Product_Version	String
3*	100A00	String	Software_Version	String
4*	2FF800	String	Serial_Num	String
5	100B00	uint8	Node_ID	DEC

Note

Figure 5-5 Software version

If the download is stopped for some reason, first power off, then power on the drive, select the firmware version and start downloading, and finally turn on the communication and connect to the host computer.

5.4 Read/write controller configuration

For a large number of the same applications, in order to avoid setting drive parameters one by one, you can use this feature to configure drives.

5.4.1 Read setting from controller

Click Tools->R/W Controller Configuration->Read Settings from Controller or click the +i button. The following window appears:

			_	
s to L	Driver	Read Settings from Driver		
No p	bath			
N	Index	Driver Value	Result	Name
	_	No path		

Figure 5-6 Read drive configuration

- Click Open List to select a parameter list file (.cdo). The parameter appears in the window.
- Select the cdo file, the path contains two different cdo files:

errlist.cdo, ead only the historical fault information of the drive.

Kinco_Settings_Without Postable, Read drive control parameters and motor parameters.

Click Read Settings from Controller to get the Drive Value and Result, and then click Save to File to save the setting as a .cdi file

Note

•If the object does not exist in the drive, the result will be "False" and will be highlighted in red, and only read parameters with a result of "true" will be saved in the.cdi file.

5.4.2 Write setting to controller

Click Tools->R/W Controller Configuration->Write Settings to Controller or click the button.

The following window appear *button*, the following window appears

Figure 5-7 Write drive configuration

Click Open File to select a parameter settings file (.cdi). The parameter settings appear in the window. Click Write to Controller to get the Check Value and Result. The "False" Result means the value has not been written successfully, probably because the object doesn't exist in the controller.

Click Save in EEPROM and Reboot to activate all parameters.

\rightarrow

Note
 Before writing the settings to the drive, unenable the drive, if the drive is enabled, some objects cannot be successfully written.

5.5 Digital IO function

Click menu item Controller->Digital IO Functions or click the button I-0. The following window appears. Function and polarity are shown. Shown as default function and polarity.

tal IO Functions						
nput						
Function		×	Simulate	Real	Polarity	Internal
Enable	>>	×		•		•
Reset Errors	>>	×		•		•
Start Homing	>>	×		•		•
P Limit +	>>	×		•		•
P Limit -	>>	×		•		•
	>>	×		•		•
Home Signal	>>	×		•		•
	>>	×		•		•
D. Annuk	_			827	Common A	
		M	c. 1.1		0.1.1	
Function		_	Simulate	Real	Polarity	
Ready	>>	×		•		
Motor Brake	>>	×		•		
Pos Reached +Speed Reached +Spee	>>	×		•		
Zero Speed	>>	×		•		
I	>>	×		•		
	>>	×		•		
	>>	×		•		
	-	×				
	nput Function Enable Reset Errors Start Homing P Limit + P Limit - Home Signal Dutput Function Ready Motor Brake Pos Reached +Speed Reached +Spee Zero Speed	nput Function Enable Search Ender Function Enable Function Function Function Ready Fors Reached +Speed Reached +Speed For Speed Search Ender Function Functi	put ¥ Function X Enable >> Reset Errors >> Start Homing >> Start Homing >> P Limit + >> X X P Limit + >> X X Home Signal >> X X Putput >> Function X Ready >> X X Pos Reached +Speed Reached +Spee >> X X Zero Speed >> >> X X X	put Function X Simulate Enable >> X Image: Simulate Reset Errors >> X Image: Simulate Start Homing >> X Image: Simulate Start Homing >> X Image: Simulate PLimit + >> X Image: Simulate PLimit - >> X Image: Simulate Pome Signal >> X Image: Simulate Poutput - - - Function X Simulate Ready >> X Image: Simulate Pos Reached+Speed Reached+Spee > X Image: Simulate Zero Speed > X Image: Simulate >> X Image: Simulate - > X Image: Simulate -	put Function X Simulate Real Enable >> X Image: Constraint of the second seco	Simulate Real Polarity Function X Image: Constraint of the second

Figure 5-8 Digital IO

5.5.1 Digital input

Ks Digital IO Functions	
Digital Input Num Function	Simulate Real Polarity Internal
DIN1 Enable >>	
Figure 5-9 Digita	l input
Function: Click >> to select Din function setting click it to delete t	the DIN function
Real: Shows the real digital input hardware status.	
Actual input: Displays the actual digit input status	
Polarity: I indicates a high level input, and the effective input is	1; Indicates a low level input, and the effective input
is 1.	
Real: Shows the real digital input hardware status.	
means "active", logic status of the digital input is 1; means"	'not inactive", logic status of the digital input is 0.

DIN function	Description
Enable	Controller enabling 1: Enable controller = Din control word selection(2020.0F) 0: Disable controller = 0x06

Kinco FD5 AC series servo driver user manual

Kinco FD5 AC series servo	driver user manual Chatper 5 Kincoservo+ user guide			
Reset errors	Set the Controlword to reset errors, active edge (bit7) $= 1$			
	Operation_mode selection			
Operationg mode	1:Operation_mode = EL.Din_Mode1 (2020.0E), Defult value=-4			
Operationg mode	0:Operation_mode = EL.Din_Mode 0 (2020.0D), Defult value =-3			
	 Velocity control loop integrating gain off Velocity control loop integrating gain has been set. 			
Kvi off	Refer to chapter 7 for more information about Kvi			
P limit+	Positive/Negative position limit switch input for "normally closed" limit switches			
P limit-	0: position limit is active, the related direction is blocked			
Home signal	Home switch signal for homing			
Invert Direction	Inverts command direction in the velocity and torque mode			
Din Speed index 0				
Din Speed index1	Din_Speed Index in the DIN speed mode			
Din Speed index2				
Din position index0				
Din position index1	Din position index in Din position mode			
Din position index2				
	Set control word bit2=0 to enable emergency stop. If you want to re-enable after emergency stop,			
Quick stop	you need to first set the control word to 0x06 and then to 0x0F (if the input port is configured with drive enable, you only need to trigger the enable signal again).			
Start homing	Starts homing. Only makes sense if the controller is enabled. The controller returns to the previous operation mode after homing.			
Activate Command	Actives the position command. Controls bit 4 of the Controlword, e.g. Controlword=0x2F>0x3F			
Multi-function input 0	For selecting the electronic gear ratio, the electronic gear molecule and the electronic gear			
Multi-function input 1	denominator are determined by a BCD code composed of multifunctional inputs, as detailed in			
Multi-function input 2	Section 5.5.3			
Moltor error	If an external error occurs (for example, the motor itself is too hot), the error signal can be transmitted to the driver through the input port			
	For safety reasons, pre-enable can serve as a signal for indicating whether or not the entire system			
Pre enable	is ready,			
	1: Drive can be enabled; 0: Drive can not be enabled			
Position table condition 0				
Position table condition 1	The operating conditions of the Location table mode are described in Chapter 6, Section 6.4.1			
Active position table	Start the Location table mode, as described in Chapter 6, Section 6.4.1			
Position table index 0				
Position table index 1	In location table mode, the starting location index is determined by the BCD code composed of location table index 0, location table index 1, and location table index 2			
Position table index 2				
End position table	Terminate the position table operation mode, see Chapter 6, Section 6.4.1			
Cleaning pulse	Clear the number of pulses the drive has received but not completed			
	1: Pause motor, code: bit8 = 1			
Pause	0: Motor continues to execute unfinished instructions			
Forward trim	Position fine-tuning data in positive direction in active pulse mode			
Negative trimming	Position fine-tuning data in negative direction in active pulse mode			

→

Note

DIN control word selection (2020.0F) is set to 0x2F by default. For the definition of control word, please refer to Chapter 6.1

5.5.2 Digital output

Num	Function	🔀 Simulate Real Polarity
	Ready	

Figure 5-10 Digital output

Function: Click \geq to select Din function setting click \Join to delete the DIN output function

Real: Shows the real digital output hardware status.

Actual output: Displays the actual digital output state, which is the result of the comprehensive action of simulation, polarity and logic state, or indicates the digital output is ON, or indicates the digital output is OFF

Polarity: Indicates that if the logical status is 1, the actual output is ON; Indicates that if the logical status is 0, the actual output isON.

Effective output: the result of simulation, actual output and polarity action; • indicates activation, the logical status of the corresponding function is 1. • indicates not activation, the logical status of the corresponding function is 0.

Table 5-3 Digital output functions

OUT function	Description
Ready	Controller is ready to be enabled
Error	Controller error
Pos reached	In position mode, when the difference between the actual position and the target position is less than the target position window (6067.00), and the duration is greater than or equal to the position window time (6068.00), the output position to the function is displayed
Zero speed	When the absolute value of the actual velocity -ms (60F9.1A) is less than or equal to the zero velocity window (2010.18), and the duration is greater than or equal to the zero velocity time (60F9.14), the zero velocity function is output
Motor Brake	The motor brake control output signal can be used to connect an external relay that controls the motor lock. If the brake motor is used, this function must be set, otherwise it will damage the motor. An effective output of green indicates that the lock is opened, and an effective output of gray indicates that the lock is closed.
Speed reached	Output speed to function when the speed error (60F9.1C) is less than the speed to window (60F9.0A)
Index signal occurrence	Motor index signal appears
Speed limit	In torque mode actual speed reached Max_Speed(607F.00)
Motor lock shaft	Drive is enabled. Motor locks shaft
Position limit	Position limit function is active
Home Found	Home found
Torque reaches limit	When the actual torque (60F5.08) reaches the reference (60F5.06) and the duration exceeds the filter time (60F5.07), the output torque reaches the limit, and the torque reaches the reference (60F5.06) is set to 0, indicating that the torque limit detection is not enabled.
PosTable Active	Position flow mode running
Multifunction signal 0	
Multifunction signal 1	Din multi-segment position control position to output function, please refer to Chapter 6 section 6.4.1 for details
Multifunction signal 2	

5.5.3 Fast capture

The Fast Capture function is used to capture the Position Actual(6063.00) when the related DIN edge occurs. Response time is maximum 2ms.

Internal address	Туре	Name	Unit
2010.20	Uint8	Rising_Captured 1	Dec
2010.21	Uint8	Falling_Captured 1	Dec
2010.22	Uint8	Rising_Captured 2	Dec
2010.23	Uint8	Falling_Captured 2	Dec
2010.24	Int32	Raising_Capture_Position 1	Dec
2010.25	Int32	Falling_Capture_Position 1	Dec
2010.26	Int32	Raising_Capture_Position 2	Dec
2010.27	Int32	Falling_Capture_Position 2	Dec

When DIN function Fast Capture1 is configured to DIN and a rising DIN edge occurs, Rising Captured1 is changed to 1. At the same moment Pos Actual is stored to Rising Capture Position1. If a falling DIN edge occurs, Falling Captured1 is to 1. At the same moment Pos Actual is stored to Falling Capture Position1. Once Rising Captured1 or Falling Captured1 is changed to 1, the user needs to reset them to 0 for the next capturing operation, because any further edges after the first one will not be captured. See Fast Capture1 concerning DIN function Fast Capture2.

5.6 Scope

In the operation process, if the operation effect of the equipment can not meet the requirements, or other accidents occur, you can use the oscilloscope to analyze the problem.

Ks Scope								
Zoom Depth:0 Scope Mode:Normal								
					-		 	
Sample Time 62.5us	1 0		Value		Hide 🦵 Sm		Cursors	
Samples	10 State 10	I I_q_Comp	<u> </u>	Ap	▼ 1.0E00	and and a	X1 X2 T	
Trig Source Trig Offse		Speed_QEI_Bad		rpm	▼ 1.0E00		Y1 Y2 Copy X1 X2	
Null		Pos_Actual	▼ > ▼ >	inc	▼ 1.0E00		S	

Figure 5-11 Scope window

Sample time: Data collection period. If the value is set to 1, data is collected every 62.5us.

Samples: This parameter indicates how many data are collected during the sampling. If the value is set to 500, 500 data are collected.

Trig offset: The number of samples before the trigger source is triggered.

Trig source and Trig level: The trigger condition is set in Figure 5-13 to start collecting data when the effective target current q rises to 100DEC. DEC is the internal unit and can be switched to the current unit.

f clicking could change it to rising edge trigger **f**, falling edge trigger **r** or rising and falling edge Trigger edge: trigger

Object: Maximum 64-bit length data can be taken in one sample, e.g.: 2 Int32 objects bit or 4 Int16 objects.

Single: Single means sample for one trigger event only; Single means sample continuously.

Zoom in/ Zoom out the oscillogram: Hold down the right mouse button and drag the mouse down to the right to zoom in, and to the upper left to zoom out.

Cursors: Up to 4 scope cursors can be selected by clicking <u>Y1 Y2</u> button. The scope

cursors appear in the oscillogram, and select the channel you want to observe from the Channel Selection drop-down menu.

Moving Cursors: Hold down the left mouse button, drag the cursor to move, the sampled data, the difference between X1X2 and

Y1Y2 will be displayed in the following area:

X1 X	2 🖑	Sel CH	
Y1 Y	2 Copy	Null 👻]
X1	X2	dX	Unit us
Y1	¥2	dY	Unit

Copy: Copy the sampled data to the clipboard, you can open excel and paste the data directly.

Move : The button turns to yellow means the moving works. You can drag the wave by holding down the left mouse button in the oscilloscope.

Export: Exports the sampled data as a .scope file.

Import: Imports a .scope file and shows the oscillogram in the scope window.

Reread: Rereads the last scope data out of the controller and shows the oscillogram in the scope window.

Auto: If the checkbox Auto is checked, the oscillogram is auto-scaled. If Auto is not checked, the oscillogram is scaled by scale and offset value in following

2.1E-01 AV 0.0

Scale and offset value can be increased by pressing the △ button, and can be reduced by pressing the ¬ button. If Small scale checkbox is checked, scale value changing step is changed to 10% as before.

Oscilloscope mode: On the upper left side of the oscillogram the Scope Mode "normal" or "import" is shown.

-Normal: All buttons on the oscilloscope are available

-Import: The oscillogram is imported from the scope file. In this mode, the start and reread data buttons are disabled, and you can exit the import mode as prompted by the software.

Table 5-5 Oscilloscope group parameters

Internal address	Туре	Name	Description	Unit
			oscilloscope object 2 address (Format :	
		agaillagague abiast 1.6	xxxxyyzz,xxxx:index; yy:subindex;zz:data length)	
2300.01~2300.06	Uint32	oscilloscope object 1-6	Used to acquire 16-bit data; oscilloscope object 1~6	Hex
			data bits total length up to 64 bits	
			0 The oscilloscope is in an idle state, and the data	
			captured by the oscilloscope can be read at this time	
2200.07	TT: 40		1 The oscilloscope is in the state of acquiring a	D
2300.07	Uint8		certain length of data before the trigger event	Dec
		oscilloscope control	2 The oscilloscope is always collecting data	
			3 The oscilloscope gets the trigger signal, is	

Chatper 5 Kincoservo+ user guide

			collecting data of a certain length, and will enter idle mode after completion	
2300.08	Uint16	Sampling period	Oscilloscope sampling period	62.5us
2300.09	Int16	Trigger offset	The length of data to store before triggering the event. If you set data to -1, the oscilloscope will continuously acquire data until it is manually stopped. Used for some special occasions. At this point, the oscilloscope continuously monitors the trigger conditions, saves the data after the trigger is satisfied, and continues to monitor the trigger conditions after the acquisition ends.	Dec
2300.10	Uint16	Number of samples	The number of samples	Dec
2300.11	Uint8	Trigger edge	Oscilloscope trigger edge control consisting of BCD codes Bit 0 : 0—Falling edge trigger ; 1—Rising edge trigger Bit 1 : 0 Signed Comparison ; 1 Absolute Value Comparison bit 2 : 1—use mask (23000E20) , AND gate Note: You can no longer use the up and down arrows on the oscilloscope page to set the trigger edge to prevent conflicts.	Dec
2300.12	Uint32	Trigger source	Oscilloscope Trigger Object	Dec
2300.13	Int32	Trigger level	Oscilloscope Trigger level	Dec

5.7 Error display and error history

Error: Click "Controller" -> "Error display", or click button (which turns red if an error occurs), The Error Display window appears. It shows the last errors.

Figure 5-12 Error display window

Error history: Click "Controller" -> "Error history", The error history window will pop up and display the last 8 error messages, including error word, bus voltage, speed, current, temperature, working mode, and power tube status. The most recent historical failure is displayed on the first line.

Kinco FD5 AC series servo driver user manual

N	Code	DC V	RPM	Ap	°C	OperationMode	PWM States	Time Min
1		20				0		
2		85		85		0		
3		3				0		
4						0		
5		21		3	-	0		
6		22			1	0	6	
7					1	0		
8		0				0		

Figure 5-13 error history display window

Table 5-6 Error_state (2601.00) information

Bit	Error name	Error code	Description
0	Extended Error		Refer to object "Error_State 2"(2602.00)
1	Encoder not connected	0x7331	No communication encoder connected
2	Encoder internal	0x7320	Internal encoder error
3	Encoder CRC	0x7330	Communication with encoder disturbed
4	Controller Temperature	0x4210	Heatsink temperature too high
5	Overvoltage	0x3210	DC bus overvoltage
6	Undervoltage	0x3220	DC bus undervoltage
7	Overcurrent	0x2320	Power stage or motor short circuit
8	Chop Resistor	0x7110	Overload, brake chopper resistor
9	Following Error	0x8611	Max. following error exceeded
10	Low Logic Voltage	0x5112	Logic supply voltage too low
11	Motor or controller IIt	0x2350	Motor or power stage IIt error
12	Overfrequency	0x8A80	Pulse input frequency too high
13	Motor Temperature	0x4310	Motor temperature sensor alarm
14	Encoder information	0x7331	No encoder connected or no encoder communication reply
15	EEPROM data	0x6310	EEPROM checksum fault

Table 5-7 Information about error status 2 (2602.00)

Bit	Error name	Error code	Description
0	Current sensor	0x5210	Current sensor signal offset or ripple too large
1	Watchdog	0x6010	Software watchdog exception
2	Wrong interrupt	0x6011	Invalid interrupt exception
3	MCU ID	0x7400	Wrong MCU type detected
4	Motor configuration	0x6320	No motor data in EEPROM / motor never configured
5	Reserved		
6	Reserved		
7	Reserved		
8	External enable	0x5443	DIN "pre_enable" function is configured, but the DIN is inactive when the controller is enabled / going to be enabled
9	Positive limit	0x5442	Positive position limit (after homing) – position limit only causes error when Limit Function (2010.19) is set to 0.
10	Negative limit	0x5441	Negative position limit (after homing) position limit only causes error when Limit_Function(2010.19) is set to 0.
11	SPI internal	0x6012	Internal firmware error in SPI handling
12	CAN bus interrupt	0x8100	Communication interruption mode (6007.00) is set to 1 to generate fault alarm
13	Closed loop direction	0x8A81	Different direction between motor and position encoder in closed loop operation by a second encoder.
14	Master ABZ	0x7382	Master encoder connection error
15	Master counting	0x7306	The main encoder index signal is abnormal

There's a mask checkbox beside every error item, all are defaulted to be checked, reans it can be unchecked, reans it can't be unchecked. The mean the related error will be ignored. The error mask can also be set with the object error mask (2605.01) and Error mask 2 (2605.04) (see Table 5-9).

Table 5-8 Error extension (2605.07) information

Bit	Error name	Error code	Description
0	Origin record error	0x5210	Current sensor signal drift or ripple is too large
1	Internal braking resistor overtemperature	0x7111	The actual power of the internal braking resistor is too high
2	Internal braking resistor short circuit	0x7112	Internal braking unit damaged, braking circuit short circuit
3	Motor phase loss	0x6321	A phase in the motor power line UVW is not connected
4	ADC sampling saturation	0x2321	Current sampling ADC reaches limit, current runaway
12	Service timeout	0x81FF	Communication Bus Error Extension

Table 5-9 Error mask

Internal address	Туре	Name	Meaning (Bit meaning please see table5-7 and table 5-8)	Default
2605.01	Uint16	Error_Mask	Mask of Error_State(2601.00). Bit = 0 means related error will be ignored.	0xFFFF
2605.02	Uint16	Store_Mask_ON	Error mask for Error_History of Error_State(2601.00) when controller is enabled. Bit = 0 means related error won't be stored in the Error_History	0xFBFF
2605.03	Uint16	Store_Mask_OFF	Error mask for Error_History of Error_State(2601.00) when controller is not enabled. Bit = 0 means related error won't be stored in the Error_History	0x0000
2605.04	Uint16	Error_Mask2	Mask of Error_State2(2602.00). bit = 0 means related error will be ignored	0xFFFF
2605.05	Uint16	Store_Mask_ON2	Error mask for Error_History of Error_State2(2602.00) when controller is enabled. Bit = 0 means related error won't be stored in the Error_History	0xF1FF
2605.06	Uint16	Store_Mask_OFF2	Error mask for Error_History of Error_State2(2602.00) when controller is not enabled. Bit = 0 means related error won't be stored in the Error_History	0x003F

Chapter 6 Operation mode introduction

The driver parameters can be set through the driver panel or RS232 interface connected to the upper computer debugging software. In the following introduction, the nixie display address and the internal address will be displayed in the object list (not all objects have corresponding panel addresses).

6.1General steps for starting a control mode

Step1: wiring

Make sure that the necessary wiring for the application is done correctly (refer to chapter 3);

Step 2: IO function configuration

See chapter 5.5 concerning meanings of the IO function and polarity

Table 6-1 Digital input functions

Panel address	Internal address	Туре	Name	Value (hex): description
d3.01	2010.03	Uint16	Din1 Function	0001: Enable
d3.02	2010.04	Uint16	Din2_Function	0002: Reset Errors
d3.03	2010.05	Uint16	Din3_Function	0004:Operation Mode control 0008: Kvi Off
d3.04	2010.06	Uint16	Din4_Function	0010: P limit+
d3.05	2010.07	Uint16	Din5_Function	0020: P limit-
d3.06	2010.08	Uint16	Din6_Function	0040: Homing Signal 0080: Invert Direction
d3.07	2010.09	Uint16	Din7_Function	00000Invert Direction0100: Din Vel Index0200: Din Vel Index11000: Quick Stop2000: Start Homing4000: Activate Command8001: Din Vel Index28004: Multifunction08008: Multifunction18010: Multifunction28020: Gain Switch 08040: Gain Switch 18100: Motor Error8200: Pre Enable8400: Fast_Capture18800: Fast_Capture29001: PosTable Cond19004: Start PosTable9008: PosTable Idx09010: PosTable Idx19020: PosTable Idx29040: Abort PosTableA001:Clear pulseA002:pauseA040: pulse forward fine-tuningA080:Pulse negative fine-tuning

Table 6-2 Digital function output

Panel address	Internal address	Туре	Name	Value (hex): description
d3.11	2010.0F	Uint16	Dout1_Function	0001: Ready 0002:Error
d3.12	2010.10	Uint16	Dout2_Function	0004: Pos reached 0008: Zero speed 0010: Motor brake
d3.13	2010.11	Uint16	Dout3_Function	0020: Speed reached 0040: Enc Index 0080:Speed limit 0100:Driver Enabled
d3.14	2010.12	Uint16	Dout4_Function	0200: Position limit 0400: Home Found 0800: Torque reached limit 1000:Multi Dout 0
d3.15	2010.13	Uint16	Dout5_Function	2000:Multi Dout 1 4000:Multi Dout 2 9001:PosTable Active

Table 6-3 Polarity Settings

Panel address	Internal address	Bit	Name	Value (hex): description
D3.08	2FF0.0D	16	Simplified IO Polarity	Set IO polarity
D3.09	2FF0.08	16	IO simulation	Used to simulate the input signal and force the output of a valid signal

Table 6-4 Digital input and output signal polarity and simulation setting method

	1	2	3	(4)	
Polarity setting D3.08			keep	0: input and output ports are normally closed1: input and output ports are normally closedOther than 0 or 1: check the current situation.	
Simulation setting D3.09	Input/output portChann0: outputinput:1: inputoutput:		keep	 0: no simulate signals, it will not force output of valid signal 1: simulate signals, it will force output of valid signal Other than 0 or 1: check the current situation. 	

Example: setting d3.08 to "110.0" means that the DIN1 input port is a normally closed point, and setting d3.08 to "110.1" means that the DIN1 input port is a normally open point. Setting d3.09 to "110.0" means not to simulate the DIN1 input signal, and setting d3.09 to "110.1" means to simulate the DIN1 input signal.

Power-on Self-Enable (Expert Mode)

If the Enable function is not configured to DIN, the controller can be auto-enabled at power-on or reboot, with the following setting:

Table 6-5 Power-on Self-enable

Panel address	Internal address	Туре	Name	Value
D3.10	2000.00	unit8	Power-on Self-enable	1

\rightarrow

If the DIN port defines an enable signal, it cannot be powered on by the panel Settings. Customers are not recommended to use the power-on self-enable operation. If you want to use it, you must fully consider the safety issues.

Step 3: Set necessary parameters

Note

This chapter describes the setting of basic operation parameters. On the upper computer software interface, click Drive -> Basic Operation to enter the setting interface of basic operation parameters. Refer to Chapter 7 for performance adjustment of servos. Refer to Chapter 9 for instructions on how to operate the servo panel.

Related basic parameter Settings (Some basic parameters are not in the basic operation interface of the software, and can be added freely by referring to section 5.1.5)

Table 6-6 Basic parameters

Panel address	Internal address	Bit	Name	Description
D0.00	6060.00	8	Operation_mode	 -3 : Immediate speed mode 3 : Speed mode with acceleration and deceleration 1: position mode -4: Pulse mode 4: Torque Mode
D0.01	6040.00	16	Controlword	0x0F/0x2F: Used when operation_mode is -3, 3, -4, 4 and position flow mode 0x2F->0x3F: Activate the absolute position command, the absolute positioning command will not be executed immediately according to the change of the target position, it is used when the operation_mode is 1 0x4F->0x5F: Activate the relative position command, used when the operation_mode is 1 0x103F: Immediately execute the absolute positioning command according to the target position change, used when the operation_mode is 1 0x0F->0x1F: Used when starting to find the origin in 6 mode 0x06->0x86: Used when resetting drive faults 0x06: Loosen the shaft, turn off the drive enable
	607A.00	32	Target location	target absolute/relative position
	6081.00	32	trapezoidal velocity	Contour velocity in position mode
	6083.00	32	Profile_Acc	Profile acceleration, profile deceleration, for
	6084.00	32	Profile_Dec	Operation_Mode 1 and 3
	60FF.00	32	Target speed	Target speed in 3 operation_mode and -3 operation_mode
	6071.00	16	Target torque %	Target torque as a percentage of rated torque
	6073.00	16	Target current limit	Drive output current limit
D3.16	2020.0D	8	Din_Mode0	If Operation Mode Sel function is configured to DIN, Operation $M_{cl} = M_{cl} + M_{cl} + M_{cl}$
D3.17	2020.0E	8	Din_Mode1	Operation_Mode(6060.00)=Din_Mode0 when Din_Internal=0; Operation_Mode=Din_Mode1 when Din_Internal=1
D0.07	2690.00	8	Communication encoder data reset	Since the absolute value encoder data is saved by the battery, when the device runs for the first time, it is necessary to clear the multi-turn data at the origin position. After clearing the encoder status and multi-turn data, restart/reset the drive. Communication encoder command write: 1: clear encoder status 2: read fault word

	3: Clear encoder status and multi-turn data	
	8; reset the status flag	
	9: Clear multi-lap data	
	10: Equivalent to $8 + 9$	
	12: Clear lap data (requires factory password)
	Read:	
	bit 0: 1 = Command can be entered	
	bit 1: 1 = Last command execution completed	L
L		

Note

When the value directly written in the Operation_mode through the basic operation interface cannot be saved after power off and restart, the Operation_mode can be saved by configuring the Operation_mode control function on the input port of the drive, but it should be noted that the Operation_mode is selected 0 first. Set it with the value of operation mode selection 1, and then store the control parameters.

Step 4: Save and reboot

For details on how to save and restart the drive, see Chapter 5.

Step 5: Start operation

The parameters related to the start mode can be started by I/O configuration or by writing parameters directly to the host computer.

Note Because DIN has the highest priority, you cannot manually modify the value of an object parameter if the object data is controlled by DIN. For example, when the working mode parameter is set through I/O configuration, the value of the internal object working mode cannot be directly written through the host computer. When the control word parameters are set through I/O configuration, the value of the internal object control word can no longer be written directly to the host computer.

6.2 Velocity mode (-3, 3)

The speed mode has two modes: 3 and -3. The speed mode can be controlled by external I/0 control and internal instruction writing.

Panel address	Internal address	Bit	Name	Description	Value
D0.00	6060.00	8	Operation_Mode	 -3: The velocity command is specified directly by Target_Speed. Only the velocity control loop is active. 3: The velocity command is specified by Target_Speed with profile acceleration and profile deceleration. Velocity- and position control loops are active. 	-3 or 3
	60FF.00	32	Target_Speed	Target velocity	User defined
	6040.00	16	Controlword	0x0F Enables the drive 0x06 Loosen the shaft and disable the drive	0x0F, 0x06
D2.16	607E.00	8	Speed position direction controlrun polarity reversal 0: Counterclockwise is the posit direction (default value) 1: Clockwise is the positive dire		0、1

Table 6-7 Velocity mode parameters description

Note

The speed position direction control cannot be modified in the enabled state.

6.2.1 DIN Speed mode

The Din_Speed object window in PC software can be accessed from menu item Controller->ControlModes->DIN Speed Mode.

```
Table 6-8 DIN Speed mode
```

Panel address	Internal address	Bit	Name	Description	Value
D3.18	2020.05	32	Din_Speed[0]		
D3.19	2020.06	32	Din_Speed[1]		
D3.20	2020.07	32	Din_Speed[2]	The velocity command is specified via	
D3.21	2020.08	32	Din_Speed[3]	Din_Speed[x].	
D3.44	2020.14	32	Din_Speed[4]	x is the BCD code of Bit 0: Din Vel Index0	
D3.45	2020.15	32	Din_Speed[5]	Bit 1: Din Vel Index1 Bit 2: Din Vel Index2	Ţ
D3.46	2020.16	32	Din_Speed[6]	A bit which is not configured means 0.	User defined
D3.47	2020.17	32	Din_Speed[7]	-	
	6083.00	32	Trapezoidal acceleration	When the operation_mode is 3 mode, the trapezoidal acceleration and trapezoidal	
	6084.00	32	Trapezoidal deceleration	deceleration must be set, otherwise the response speed segment will not be executed.	

Table 6-9 DIN Speed setting

DIN speed index 0	DIN speed index 1	DIN speed index 2	DIN speed index 2 Speed	
0	0	0	Din_Speed[0]	
1	0	0	Din_Speed[1]	
0	1	0	Din_Speed[2]	
1	1	0	Din_Speed[3]	
0	0	1	Din_Speed[4]	User defined
1	0	1	Din_Speed[5]	
0	1	1	Din_Speed[6]	
1	1	1	Din_Speed[7]	

0 means the signal is off, 1 means the signal is on.

The following points need to be noted when activating DIN speed mode:

1.DIN speed mode is only available in 3 or -3 operation mode, invalid in other working modes.

2. Analog-speed control (250207) is 0, close the analog-speed channel.

3.At least one of DIN speed index 0, DIN speed index 1 and DIN speed index 2 is defined in the digital input DIN as the switching signal of the speed segment.

6.3 Torque mode(4)

In the torque mode, the CD3 motor controller causes the motor to rotate with a specified torque value.

Table 6-10 Torque mode parameters description

Panel address	el address Internal address		Name	Description	Value
	6060.00	8	Operation_Mode	Set operation_mode to Torque mode	4
	6071.00	16	Target_Torque%	Target torque, percentage of rated torque	User defined

Kinco FD5 AC series servo driver user manual

Chatper 6 Operation mode introduction

6040.00	16	Controlword	Enable drive	0x0F, 0x06
607F.00	32	MAX speed limit	Motor running maximum speed limit	User defined
60F5.06	16	Torque reaches benchmark	The limit value, the actual torque exceeds the reference data and the duration exceeds the filter time, the output torque of the Dout port reaches the setting, the unit is Ap	User defined
60F5.07	16	Torque Reach Filter Time	When the actual torque reaches the reference value and the duration exceeds the filter time, Dout output torque reaches the setting, the unit is ms, the maximum is 32767	User defined
60F5.08	16	Reach actual torque	Monitors the actual torque, the unit in Ap	/

Note

The torque reach setting function of Dout can be used in any working mode.

6.4 Position mode(1)

In the position mode, the driver control motor can carry out absolute position positioning and relative position positioning. The speed and position instructions are controlled by the target position, ladder speed and position table inside the driver.

Panel address	Internal address	Bit	Name	Description	Value
D0.00	6060.00	8	Operation_Mode	Set the working mode to absolute/relative position mode	1
	607A.00	32	Target_Position	Target absolute / relative position	User defined
	6081.00	32	Profile_Speed	Profile speed for positioning	User defined
	6083.00	32	Profile_Acc	Profile acceleration for positioning	User defined
	6084.00	32	Profile_Dec	Profile_Dec Profile deceleration for positioning	
	6040.00	16	Control word	0x2F-> $0x3F$: Activate the absolute position command. The absolute positioning command will not be executed immediately according to the change of the target position. It is used when the operation mode is 1. 0x4F-> $0x5F$: Activate relative position command, used when the operation mode is 1. 0x103F: Immediately execute absolute positioning instructions according to target position changes, used when the operation mode is 1. 0x0F Location table mode	0x2F->0x3F 0x4F->0x5F 0x0F 0x06 0x103F

Table 6-11Position mode parameter description

6.4.1 DIN position mode introduction

First, when using the DIN position mode, at least one of the DIN position index 0, DIN position index 1, and DIN position index 2 must be defined in the I/O configuration as a switch signal for the position segment.

DIN position section can be opened through the **Drive -> control mode >DIN position mode** in the upper computer software menu bar.

Table 6-12 DIN position mode instruction
--

Panel address	Internal address	Bit	Name	Description	Value
	2020.01	32	Din_pos[0]		
	2020.02	32	Din_pos[1]	The speed instruction of the drive is specified by DIN speed $[x]$, where x is a BCD code	
	2020.03	32	Din_pos[2]	consisting of the following signals: 位 0:	
	2020.04	32	Din_pos[3]	Din_pos[0];	
	2020.10	32	Din_pos[4]	位 1: Din_pos[1] ;	
	2020.11	32	Din_pos[5]	位 2: Din_pos[2]; The case where the digits are all 0 cannot	User defined
	2020.12	32	Din_pos[6]	occur;	
	2020.13	32	Din_pos[7]		
D3.40	2FF1.01	8	Din_position_selectL	Select the position segment L to be set (L range is 0-7, corresponding to the internal position segment 0-7 in turn)	
D3.41	2FF1.02	16	Din_position_M	Number of pulses set in position segment (L)	
D3.42	2FF1.03	16	Din_position_n	=M*10000+N	

For example

The configuration interface of I/O is shown in the following figure:

Num	Function		×	Simulate	Real	Polarity	Internal
DIN1	Enable	>>	×		•		•
DIN2	Activate Command	>>	×		•		•
DIN3	Din Pos Index0	>>	×		•		•
DIN4	Din Pos Index1	>>	×		•		•
DIN5	Din Pos Index2	>>	×		•		•
DIN6		>>	×		•		•
DIN7		>>	×		•		

Figure 6-1 DIN Configuration window

Num Function	X Simulate	Real	Polarity
OUT1 Multi Dout 0	>> × 🔲	•	
OUT2 Multi Dout 1	>> × 🔲	•	
OUT3 Multi Dout 2	>> × 🔲	•	
OUT4 Pos Reached	>> × 🗐	•	

Figure 6-2 DOUT Configuration window

Table 6-13 DIN Location mode setting

Panel address	Internal address	Name	Value	Unit
D3.17	2020.0E	Operation mode choose 1	1	
	2020.02	Din Position [1]	User define	DEC
	2020.06	Din Speed [1]	User define	rpm

Kinco FD5 AC seri	es servo driver user	Chatper 6 Operation mode introduction					
	6083.00	Profile_acceleration	User define	rps/s			
	6084.00	Profile deceleration	User define	rps/s			

After enabling, select the position segment to go, the simulation command is activated, the drive executes the program of the selected position segment, and outputs the multi-function signal 0 after reaching the Din position [1].

• In the multi-segment position mode, the position-to-signal of the 1-7 segment of the Din position is represented by the BCD code composed of the multi-function signal 0-2.

• The command activation can set the bit4 of the control word to activate the position command. The level change of the DIN position index 0~2 can also activate the position command. However, when the first segment is positioned as DIN position 0 after enabling, there is no index signal. The level change cannot activate the DIN position 0, so the DIN input port definition command is required to activate.

6.4.2 Position table mode

Position Table mode is used to run up to 32 tasks in Position mode. Each task includes information about target position, speed, acceleration, deceleration, stopping/advancing to the next task, index to the next task, conditions for the next index, maximum number of cycles, etc.

To use the positio table function, you must configure the "Activate positio table" function in the input port, and other location table functions can be defined according to usage requirements.

 Table 6-14 Input port function of PosTable mode

Name	Description
PosTable Cond0	If Cond0 ON, Condition0 = PosTable Cond0 (refer to introduction concerning Cond0 ON)
PosTable Cond1	If Cond1 ON, Condition1 = PosTable Cond1 (refer to introduction concerning Cond1 ON)
Start PosTable	Start position flow
PosTable Idx0	Entry index of position flow,
PosTable Idx1	bit0: PosTable Idx0; bit1: PosTable Idx1;
PosTable Idx2	bit2: PosTable Idx2. A bit which is not configured to DIN means 0.
Abort PosTable	Abort position flow

Table 6-15 Position table mode output function

Name	Description
PosTable Active	Position table mode running

Through the PC software, click the menu bar **Drive - > Control Mode - > Position Table Mode** to enter the position table parameter Settings.

Kŝ	Positio	n Tabl	e M	ode															-		×
									CTL Reg	ofin	dex:0										
Bit0-4:Next Index Bit5 Bit6 Bit7 Bit8:Next/Stop Bit9:Cond 0 Bit10:Co							Cond 1	ond 1 Bit11:And/Or Bit12-13:MOD							15:Start	Cond.					
	0 0 0 0					0	0			0			0			0			0		
Idx	MODE	StartC	ond.	Pos inc		Spe	ed rpm	Delay ms	Acc idx	De	c idx	CTL Reg	1	Loops	Rest		Acc rps		s/s	Dec rps/s	
0	A	Ignore		0		0		0	0	0		0		0	0		0 0			0	
1	A	Ignore		0		0		0	0	0		0		0	0		1		0	1	0
	A	Ignore		0		0		0	0	0		0		0	0		2		0		0
3	A	Ignore		0		0	2	0	0	0		0		0	0		3		0		0
4	A	Ignore		0		0		0	0	0		0		0	0		4		0		0
	A	Ignore		0		0		0	0	0		0		0	0		5		0	1	0
6	A	Ignore		0		0		0	0	0		0		0	0		6		0		0
7	A	Ignore		0		0		0	0	0		0		0	0		7		0		0
8		Ignore		0		0		0	0	0		0		0	0						
9	A	Ignore		0		0		0	0	0		0		0	0						
10	A	Ignore		0		0		0	0	0		0		0	0		Curr	ent In	dex	0	
11	A	Ignore		0		0		0	0	0		0		0	0						
12	A	Ignore		0		0		0	0	0		0		0	0		Read Table			1	
13	A	Ignore		0		0		0	0	0		0		0	0		_		uuru		
14	A	Ignore		0		0		0	0	0		0		0	0				1		
15	A	Ignore		0		0		0	0	0		0		0	0		1	Write T	able		
16	A	Ignore		0		0		0	0	0		0		0	0					1	
17	A	Ignore		0		0		0	0	0		0		0	0		I	nport'	Table	1	
18	A	Ignore		0		0		0	0	0		0		0	0		_			1	
19	A	Ignore		0		0		0	0	0		0		0	0		E	xport	Table	1	
20	A	Ignore		0		0		0	0	0		0		0	0		_			1	
21	A	Ignore		0		0		0	0	0		0		0	0			lear T	able	1	
22	A	Ignore		0		0		0	0	0		0		0	0			~ 1	uune		
23	A	Ignore		0		0		0	0	0		0		0	0		-	_		_	
24	A	Ignore		0		0		0	0	0		0		0	0		-				
25	A	Ignore		0		0		0	0	0		0		0	0						
26	A	Ignore		0		0		0	0	0		0		0	0						
27	A	Ignore		0		0		0	0	0		0		0	0						
28	A	Ignore		0		0		0	0	0		0		0	0	1					
29	A	Ignore		0		0		0	0	0		0		0	0						
30	A	Ignore		0		0		0	0	0		0		0	0						
31		Ignore		0		0		0	0	0		0		0	0						

Figure 6-3 Position table mode window

The DIN Start PosTable signal (rising edge) triggers the entry index (specified via the DIN function) task, but whether or not the task is executed depends on the start condition (CTL reg bit14-15). After one task is finished, it goes to the next index (CTL reg bit0-4) or stops, depending on Next / Stop (CTL reg bit 8), Condition (CTL reg bit 9-11) and Loops. The current index box shows the index of the task which is being executed.

Up to 32 position control tasks can be set, and each task contains the following items:

Idx: Index of task, range: 0-31

Pos inc: Position command

Speed rpm: Speed command during positioning

Delay ms: Delay time before going next index(unit: ms).

Acc idx, Dec idx: Range: 0-7, index of profile acceleration, deceleration during positioning, related acc / dec value is set in following area fields:

	Acc rps/s	Dec rps/s
0	0	0
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	0	0
7	0	0

Figure 6-4 Acceleration and deceleration table

CTL Reg: Contains following bits:

- Bits 0-4: Next index, defines the index of the next position control task
- Bits 5-7: reserved
- Bit 8: Next / stop,

1: Next; go to next task if condition (see bit9-11) = 1 and loops checking is OK (see Loops) after current positioning task is finished.

- 0: Stop; stop after current positioning task is finished
- Bit9: Cond0 ON,
 1: Cond0 ON; condition0 means Logic status of DIN function PosTable Cond0.
 0: Cond0 OFF
- Bit 10: Cond1 ON,
 1: Cond1 ON; condition1 = Rising edge of DIN function PosTable Cond1.
 0: Cond1 OFF
- Bit 11: and / or; only on case of both Cond0 and Cond1 is ON, 1: AND; Condition = (Condition0&&Condition1).
 0: OR; Condition = (Condition0||Condition1).

Note

- Condition = 1 if neither Cond0 nor Cond1 is ON Condition = Condition0 if only Cond0 is ON
- Condition = Condition1 if only Cond1 is ON
- Bits 12-13: MODE, mode of the position command, 0 (A): Pos inc is the absolute position.
 - 1 (RN): Pos inc is the position relative to current target position.
 - 2 (RA): Pos inc is the position relative to the actual position.
- Bits 14-15: StartCond, start condition. If this task is triggered by the Start PosTable signal, normally the controller will

execute it immediately, but if there' s a positioning task still running:

0 (ignore): ignore.

1 (wait): execute this command after current task is finished (without delay).

2 (interrupt): interrupt the current task, execute this command immediately.

For convenience, all CTL_Reg bits can be set in the following fields:

CTL Reg of index:0												
Bit0-4:Next Index	Bit5	Bit6	Bit7	Bit8:Next/Stop	Bit9:Cond 0	Bit10:Cond 1	Bit11:And/Or	Bit12-13:MODE	Bit14-15:StartCond.			
0	0	0	0	0	0	0	0	0	0			

Figure 6-5 CTL Reg edit
Kinco FD5 AC series servo driver user manual

<u>Loops</u>

- Defines loop limit for the task which is running in loops;
 0: no limit,
 - \geq 1: position flow stops when loop count = loops, or if the next index' s loop count = next index' s loops.

Remaining

• The remaining number of times the task can be executed, invalid when the Loops is 0.

The data is imported from the loop when the position flow is started. Each time a task is executed, the remaining number of times is reduced by one. When the remaining number of times is reduced to 0, the corresponding task will exit the execution. <u>Copy and paste</u>

• The task information of the location table can be copied to another row. Right-click on the task of any row selected, and the following window will appear. Click Copy Row, then select another row, and click Paste Row.

Idx	MODE	StartCond.	Pos inc	Speed rpm
0	A	Wait	400	0
1	A	Ignore	0	0
2	Α	Ignore	0	Copy Row
3	A	Ignore	0	Paste Row
4	A	Ignore	0	- asic now

Figure 6-6 Position table copy

Activate position flow

- After the setting of position flow, click Write Table button to write it into drive.
- Start the table via DIN with the Start PosTable function. The entry index task is triggered and position flow is started (via StartCond rule).
- The DIN AbortPosTable signal (rising edge) or deleting the Start PosTable function configuration in DIN aborts a running position flow after the currently running task is finished.
- Position flow is aborted immediately if an error occurs or if the Operation_Mode is changed.

The table in t	he window is	not writt	en to the co	ntroller auto	matically.	The	Write Table
button has to	be clicked. T	`he table (can be read	out of the c	ontroller a	nd into t	he window
clicking the	Read Table	button.	A table can	be importe	d from an	existing .	pft file to th
windowby cli	Import	Table	and it can be	exported f	rom the wi	indow to	a nft file ha

6.5 Pulse mode(-4)

In the pulse mode, the target velocity command is specified via the pulse input with gear ratio, Please refer to Figure 4-4 in Chapter 4.3.2 for the wiring method in pulse mode. It can be debugged by expanding the relevant parameters in the software.

Panel address	Internal address	Bit	Name	Description	Value
	6060.00	8	Operation_Mode	Setting operation mode	-4
D3.34	2508.01	16	Gear_Factor[0]	Gear ratio=Gear Factor/Gear Divider	User
D3.35	2508.02	16	Gear_Divider[0]	Geal_latio_Geal_Factor/Geal_Divider	define
	6040.00	16	Controlword	Enable drive	0x2F:
D3.36	2508.03	8	PD_CW	Pulse train mode 0: CW / CCW 1: Pulse / direction 2: A / B (incremental encoder)	0, 1, 2

Table 6-16 Pulse Mode

Kinco FD5 AC series servo driver user manual

Chatper 6 Operation mode introduction

	0 001100 0010	o estrict	aber manaar	enarper o operation mode introc	
D1.21	2508.04	32	Gear Pre-pulse data	The main encoder port counts before inputting pulse electronic gear	
D1.22	2508.05	32	Gear Post-pulse data	The main encoder port counts after inputting pulse electronic gear	
D1.23	2508.0C	16	Gear Pre-pulse frequency	Pulse speed of spindle input(pulse/ms)	
D1.24	2508.0D	16	Gear post-pulse frequency	Speed after spindle input pulse gear ratio (pulse/ms)	
D3.37	2508.06	16	PD_Filter	Pulse filter (ms)	
D3.38	2508.08	16	Frequency_Check	Frequency limit (inc/ms), if pulse count (in 1 ms) is greater than Frequency_Check, over frequency error occurs.	
	2507.01	32	Position fine-tuning	Position fine-tuning is used to set the position data to be fine-tuned in pulse mode, the unit is inc, the default value is 0	User define
	2507.02	32	Speed Fine tuning	Speed fine-tuning is used to set the speed when performing position fine-tuning, the unit is inc/ms, the default value is 0	
	3046.00	08	CPLD Pulse Filter Configuration	CPLD internal filter is used for pulse input port, only for pulse signal with 50% duty cycle, the filter frequency is: 0: 4MHz 1: 3.2MHz 2: 2MHz 3: 1.6MHz 4: 500KHz(Default) 5: 330KHz 6: 250KHz 7: 125KHz Note: The filter frequency must be higher than the Gear pre-pulse frequency	User define

6.5.1 Pulse mode setting steps

Step1: Confirm pulse mode

Select the pulse mode according to the type of external input pulse signal, After the pulse mode is modified, it needs to be saved and restarted to take effect.

Table 6-17 Pulse input supported by the drive

Pulse mode	Forward	Reverse
P/D		
CW/CCW		
A/B		

Step2: Confirm CPLD Pulse Filter Setting

The CPLD filter inside the drive is used to filter the high-frequency clutter at the pulse input port to prevent pulse interference. This filter is only valid for pulsed signals with a 50% duty cycle. It should be noted that the filter frequency must be greater than the pulse frequency before the gear, otherwise the effective pulse signal will be filtered.

Step3: Confirm the electronic gear ratio

Electronic gear numerator/ Electronic gear dinomerator=65536/number of external input pulses Example: If the number of external input pulses is 10000 to make the motor rotate once, the electronic gear ratio should be 65536:10000, the numerator of the electronic gear should be set to 4096, and the denominator of the electronic gear should be set to 625.

Step4: Basic parameter settings before running

After setting the parameters of the first three steps, you can check whether there is data in the pre-gear pulse data, and whether the pre-gear pulse frequency is consistent with the pulse frequency sent by the host device. After confirmation, the working mode and the control word can be set to run the motor. The running direction of the motor can be adjusted by modifying the speed, position and direction control.

<u>6.5.2 Other function</u>

Pulse filter coefficient: Set the filter coefficient so that the externally input pulse command can be smoothly input to the drive. Adjusting this parameter can reduce the motor vibration caused by the high electronic gear ratio setting or the lack of acceleration and deceleration of the pulse command. If the coefficient is set too high, the motor response may be slowed down. The filter coefficient can only be adjusted when the motor is stopped.

Clear pulse: The clear pulse function in DIN can clear the number of pulses that the drive has received but not completed, and

the deviation pulse can be adjusted during operation. When DIN defines a clear pulse and the actual input changes from 0 to 1, use the rising edge to clear the deviation between the pre-gear pulse data and the post-gear pulse data.

Position fine-tuning: Position fine-tuning is used to set the position data to be fine-tuned in pulse mode, and speed fine-tuning is used to set the speed of fine-tuning when position fine-tuning is performed. The fine-tuning function can be used during pulse positioning operation in the following two ways:

Method 1: To achieve positive and negative direction fine-tuning by directly setting the position fine-tuning data value. When the value of position fine-tuning is greater than 0, positive fine-tuning is performed; when the value of position fine-tuning is less than 0, negative fine-tuning is performed. When position fine-tuning and velocity fine-tuning are set to 0, the fine-tuning function is disabled. Under this control mode, DIN does not define the positive/negative fine tuning function, and position fine tuning and speed fine tuning data are not saved when power fails.

Method 2: Define positive fine-tuning and negative fine-tuning functions through DIN to control fine-tuning, position fine-tuning and speed fine-tuning data can be saved after power failure.

6.5.3 Electronic gear ratio switching (expert mode)

This function can only be used by expert!

The drive supports 8 sets of electronic gear ratio settings, these settings are only valid in pulse mode (Refers to Chapter 6.5).

Internal address	Туре	Name	Value	Unit
2508.01	Int16	Gear molecule [0]	1000	Dec
2508.02	Uint16	Gear denominator [0]	1000	Dec
2509.01	Int16	Gear molecule [1]	1000	Dec
2509.02	Uint16	Gear denominator [1]	1000	Dec
2509.03	Int16	Gear molecule [2]	1000	Dec
2509.04	Uint16	Gear denominator [2]	1000	Dec
2509.05	Int16	Gear molecule [3]	1000	Dec
2509.06	Uint16	Gear denominator [3]	1000	Dec
2509.07	Int16	Gear molecule [4]	1000	Dec
2509.08	Uint16	Gear denominator [4]	1000	Dec
2509.09	Int16	Gear molecule [5]	1000	Dec
2509.0A	Uint16	Gear denominator [5]	1000	Dec
2509.0B	Int16	Gear molecule [6]	1000	Dec
2509.0C	Uint16	Gear denominator [6]	1000	Dec
2509.0D	Int16	Gear molecule [7]	1000	Dec
2509.0E	Uint16	Gear denominator [7]	1000	Dec

Table 6-18 Electronic gear ratio switching

The actual electronic gear ratio used is the electronic gear numerator [x], electronic gear denominator [x], x is a BCD code composed of multi-function input:

Bit0: muti-function input 0

Bit1: muti-function input 1

Bit2: muti-function input 2

Undefined bit is 0

For example:

DIN4	Multifunction0	>>	×	•	•
DIN5	Multifunction 1	>>	×	•	•
DIN6	Multifunction2	>>	×	•	•

Figure 6-8 Muti-function define

Muti-function input 0 = 0, Muti-function input 1 = 1, Muti-function input 2 = 2, so x = 6, The actual electronic gear ratio used is the electronic gear numerator [6] gear denominator [6].

Note

After the electronic gear ratio is switched, the deviation of the pulse data after the gear is a normal phenomenon. Please use this function with caution.

6.5.4Master-slave mode

The slave drive runs synchronously with the master drive instructions. The pulse input from the driver comes from an external encoder signal or the encoder output from the main driver. The resolution of the encoder output signal of the main driver is specified by the encoder frequency division resolution.

Table 6-19 Master-slave mode

Drive	Internal address	Bit	Name	Description	value
Master drive	2340.0F	32	Encoder crossover resolution	It can be used to set the number of encoder pulses output by the drive after the motor rotates once	User define
Slave drive	2508.03	8	Pulse mode	Slave drive is set to incremental encoder mode	2

For slave driver parameter Settings, refer to the pulse mode described in the previous section.

The connection between the master and slave is shown in the following figure:

Figure 6-9 Encoder cable connection

→

Note

Forward rotation means positive position counting, the default is CCW direction, you can set the speed position direction control (607E.00) = 1, change the rotation direction of the motor shaft

6.6 Full closed loop mode

The servo drive is connected to the encoder/grating ruler feedback signal at the mechanical end for more accurate closed-loop control, which avoids positioning errors due to the mechanical system.

Table 6-20 Full closed loop mode

Internal address	Туре	Attribute	Name	Description	Unit
250A01	32	RW	Master_Enc_Period	Fill in the resolution of the external encoder	inc
250A02	08	RW	Closed_Loop_Control	0: normal mode 1: closed position mode 2: closed velocity&position mode	DEC
250A03	08	RW	Master_Enc_Direction	1: direction by wiring 0: reverse direction	DEC
250A04	16	RW	Closed_Loop_Err_Filter	The corresponding relationship between the main encoder and the motor encoder detects the filtering time. If the counting direction inconsistency time reaches this threshold, the main encoder ABZ fault is reported	ms
250A05	16	RW	Check_Master	When the full closed-loop control is 1 and the proportional relationship between the main encoder and the motor encoder is not 1:1, it is necessary to set the correct full closed-loop spindle check and full closed-loop slave shaft check. The full closed-loop spindle check is used to set the ratio of the motor encoder, and the full closed-	DEC
250A06	16	RW	Check_Slave	loop slave shaft check is used to set the ratio of the main encoder. When the full closed-loop control is set to 2, the master-slave shaft check can be used to prevent the main encoder from slipping during operation. When the running speed of the main encoder and the running speed of the motor are not within the ratio range of the full closed- loop spindle check/full closed-loop slave shaft check, the full closed-loop fault will be reported. When any value of the master/slave axis check is 0, the full closed-loop fault detection is not enabled.	DEC
250A07	32	R	Pos_Abs_Master	Position information from the external encoder	inc
250A08	16	R	Master_Speed_VL	Speed information from the external encoder	inc/250 μs
250804	32	RW	Gear front pulse data	The main encoder port input pulse electronic gear front count	DEC
250803	08	RW	Master_Speed_VL	0: CW/CCW, Double pulse mode 1: P/D, Pulse direction mode (factory default) 2:A/B,Orthogonal (incremental encoder) mode	DEC
250A09	08	RW	Check_Rate	The full closed-loop main encoder and motor speed fluctuation ratio detection can appropriately increase the ratio when the inevitable flexible connection slip occurs between the main shaft and the main shaft.	%

The full closed-loop control wiring is shown in the figure below:

①Use the regular pulse interface to connect the external encoder signal, the output frequency of the external encoder is required to be below 500KHz, and the signal voltage range is 3.3-30VDC.

External encoder		2	Pulse inte	erface
А	\vdash	$-\frac{1}{1}$	MA+	27
A/			MA-	29
В			MB+	31
В/			MB-	33
Z	\vdash		MZ+	35
Z/	+-		MZ-	18

Figure 6-11 Fully closed loop control connection to regular pulse interface

②Use the high-speed pulse interface to connect the external encoder signal, the output frequency of the external encoder is required to be below 4MHz, and the signal voltage range is 3.3-5VDC.

External encoder	2	Pulse inte	erface
А	$-\frac{1}{1}$	MA	27
A/		/MA	19
В		MB	31
В/		/MB	21
Z		MZ	35
Z/		/MZ	23

Figure 6-12 Full closed-loop control to connect high-speed pulse interface

Note

The full closed loop control function occupies the pulse input port, and the driver cannot use the pulse mode after using this mode control.

The FD5-P driver has no pulse input port and does not support full closed-loop control.

6.6.1Full closed loop control operation steps

Step 1: Add the full closed loop parameters

The control parameters of the full closed loop need to be added to the window by the user. The control parameters of the full closed loop are in group 250A of the object dictionary. Right-click any window of the software and choose Add. You can add the full closed-loop parameters in the object dictionary to the window. You can save the added software window interface as a.kpJT file through **file F-> Save** in the software menu bar for subsequent debugging.

N	Index	Туре	Name	Value U	nit
0	25080C	int16	Master_Speed	0 DI	EC
1	250801	int16	Gear_Factor[0]	1000 DI	EC
2	250A02	uint8	Closed_Loop_Control	0 DI	EC
3	250A03	uint8	Master_Enc_Direction	1 D	EC
4	250A04	uint16	Closed_Loop_Err_Filter	10.00 m	s
5	250A05	int16	Check_Master	0 DI	EC
6	250A06	int16	Check_Slave	0 DI	EC
7	250A07	int32	Pos_Abs_Master	0 DI	EC
8	250A08	int16	Master_Speed_VL	0.00 in	c/250us
9	250A09	uint8	Check Rate	2.34 %	2

Figure 6-13 Close loop setting window

Step 2: confirm pulse mode

Wiring according to the out signal of the external encoder and confirm the pulse mode according to the signal type of the external encoder. Rotate the external encoder and you can see the continuous change of the front pulse data of the gear. When the external encoder moves a fixed distance and feeds back the same gear pre-pulse data, you can enter the next step, otherwise, please check the external encoder installation, hardware wiring and pulse mode again.

Note

After the change of pulse mode (2508.03) the control parameter need to be saved and it will effect after reboot drive.

Step 3: Set the main encoder cycle

The main encoder cycle needs to fill in the number of AB-phase pulses between two adjacent Z-phase signals of the external encoder. If the rotary encoder has 1 Z-phase signal per revolution, the main encoder period is equal to the resolution of the external encoder. Setting the main encoder cycle to 0 means not to detect the number of pulses between adjacent Z signals.

Step 4: Sets the main encoder counting direction

When the counting direction of the main encoder and the motor encoder is inconsistent, the full closed-loop fault alarm will appear when the full closed-loop control is turned on, which can be adjusted by the counting direction of the main encoder (0x250A03). Main encoder count the default value is 1, rotate the motor shaft and observe its absolute position and the main direction of the change of the absolute position encoder, if change the position of the two objects in the same direction you do not need to modify the master the direction of the encoder count number, if two position changes direction is not consistent the direction should be the main encoder count is set to 0.Note: All above operations are done with loose shafts.

Step 5: Set up full-closed-loop master check and full-closed-loop slave check

The calculation method of the master-slave axis ratio is as follows: Firstly, the full closed-loop control is set to 0 and the

mechanical connection between the motor and the main encoder is intact and non-skid. Clear the gear front pulse data and remember the actual position value (such as 150231), manually rotate the motor to drive the main encoder to operate for a certain distance, then observe the gear front pulse data and the actual position, and confirm the ratio according to the difference between the two positions. As shown in the table below, according to the final results, the full closed-loop spindle check =1586 and the full closed-loop slave shaft check =1000 are calculated.

Figure 6-14 Fully closed-loop master-slave axis check settings

Table 6-21 Master and slave axis check calculation method

	Gear Pre-pulse data	The actual position of motor	
Initial value	0	150231	
End value	50677	182179	
D-value	50677	31948	
Proportion	50677/31948=	1.586	

Step 6: Set up full closed-loop proportional detection and full closed-loop signal detection and filtering

The full closed-loop proportional detection is the proportional detection range of the operating speed fluctuation of the main encoder and the motor under the full closed-loop control. The default value is 2.34%, which can meet most applications. When the flexible connection of the main and slave shafts slips seriously, the ratio can be appropriately increased.

The full closed-loop signal detection filter is the detection time of the proportional relationship between the main encoder and the motor encoder, and the default value is 10ms. The detection time can be appropriately increased when the main and slave axes are flexibly connected or slip seriously.

Step 7: Set the position loop speed feedforward

When the ratio of the master and slave axes is not 1:1, adjust the position loop speed feedforward according to the ratio of the master and slave axes. In full closed-loop mode, position loop speed feedforward (%)= full closed-loop spindle check/full closed-loop slave shaft check *100%, for example: in the fifth step, the full closed-loop spindle check is 1586, and the full closed-loop slave shaft check is 1000, then the position loop speed feedforward needs to be set to 158%.

6.7 Homing mode(6)

In some applications, the system requires every movement of the mechanical load to start from the same position, so the user can meet the demand by using the origin mode. In origin mode, the user can define an origin or zero point to ensure that the mechanical load runs from the same starting point every time. The origin mode operation interface can be opened by menu bar -> Drive -> Control Mode -> Origin definition, and the operation interface after opening is shown as follows:

Figure 6-15 Homing setting

In the origin operation interface, an origin trigger signal mode must be selected first, and its related parameters can be set in the configuration bar, and mechanical limit and origin switch related configurations can be selected according to the user's site and hardware conditions. After the hardware configuration is selected, the preset origin mode is performed. If the preset origin mode cannot be written under the selected origin trigger signal mode, you can click 50 on the right to directly write the preset origin mode. The graphic effect of each origin mode is displayed in real time in the display bar below the operation interface.

Table 6-22 Homing mode

Internal address	Name	bit	Value	Description
607C.00	Home_Offset	32	User defined	Zero position offset to the home position
6098.00	Homing_Method	8	User defined	Chose the homing method
6099.02	Homing_Speed_Zero	32	User defined	Velocity for finding home position and zero position
6099.03	Homing_Power_On	8	0, 1, 2	 0: Default, turn off the Homing_Power_On 1: Start homing after power on or reboot and first controller enable 2: Automatically save the origin position of the multi-turn absolute encoder motor
609A.00	Homing_Accelaration	32	User defined	Profile deceleration and acceleration during homing
6099.01	Homing_Speed_Switch	32	User defined	Velocity for searching position limit switch / home switch signal
6099.04	Homing_Current	16	User defined	Max. current during homing
6099.05	Home_Offset_Mode	8	0, 1	0: Go to the homing offset point. The actual position will be 0. 1: Go to the home trigger point. The actual position will be - homing offset
6099.06	Home_N_Blind	8	0, 1	Home blind window
6060.00	Operation_Mode	8	6	Operation mode of drive
6040.00	Controlword	16	0x0F->0x1F	Enable drive

Note

When the power-on origin search parameter of the drive is set to 1, the power-on self enable function must be set to 1 at the same time. After the drive is powered on and started, the motor is enabled and the origin search starts immediately. Safety factors must be fully considered before use.

Home N Blind:

If the homing_method needs home signal (position limit / home switch) and index signal, Home_N_Blind function can avoid the homing result being different with the same mechanics, when the Index signal is very close to the home signal. By setting to 1 before homing, the controller detects a suitable blind window for homing automatically. It can be used to assure that homing results are always the same.

During homing, the index signal inside this blind window is ignored after the home signal is found. Home_N_Blind

(0:0rev;1:0.25rev;2:0.5rev) is defaulted to 0. If it's set to 1, it' s changed to 0 or 2 after homing depending on the index signal position relative to the homing signal. This parameter needs to be saved. If the mechanical assembly is changed or the motor has been replaced, just set it to 1 again for initial homing.

Table 6-23 Introduction to the homing method

Homing_Method	Description	Schematic
1	Homing with negative position limit switch and index pulse	Index Signal Index Limit

Chatper 6 Operation mode introduction

	i ies seivo uiivei usei manua.	enarper o operation mode introduction
2	Homing with positive position limit switch and index pulse	Index Signal
3	Homing with home switch and index pulse	Index Signal
4	Homing with home switch and index pulse	Index Signal
5	Homing with home switch and index pulse	Index Signal
6	Homing with home switch and index pulse	Index Signal
7	Homing with positive position limit switch, home switch and index pulse	Index Signal

KINCO PD5 AC SE	ries servo driver user manual	L Chatper 6 Operation mode introduction
8	Homing with positive position limit switch, home switch and index pulse	Index Signal Home Signal Positive Limit
9	Homing with positive position limit switch, home switch and index pulse	Index Signal
10	Homing with positive position limit switch, home switch and index pulse	Index Signal
11	Homing with negative position limit switch, home switch and index pulse	Index Signal Index Signal Index Limit
12	Homing with negative position limit switch, home switch and index pulse	Index Signal Home Signal Negative Limit
13	Homing with negative position limit switch, home switch and index pulse	Index Signal Home Signal Negative Limit

22	Homing with home switch	Home Signal
23	Homing with positive position limit switch and home switch	Home Signal
24	Homing with positive position limit switch and home switch	Home Signal
25	Homing with positive position limit switch and home switch	Home Signal
26	Homing with positive position limit switch and home switch	Home Signal
27	Homing with negative position limit switch and home switch	Home Signal

28	Homing with negative position limit switch and home switch	Home Signal
29	Homing with negative position limit switch and home switch	Home Signal Negative Limit
30	Homing with negative position limit switch and home switch	Home Signal
33, 34	Homing with index pulse	↓ ↓ Index Signal ↓ ↓ ↓
35	Homing to actual position	
-17, -18	Homing via mechanical limit	Negative Limit

6.80ther functions

6.8.1 Limit function

为保证电机在机械结构允许的行程范围内运行,可以通过输入限位信号防止电机超程运行。

Table 6-24 Limit setting

Panel address	Internal address	Bit	Name	Description
D3.04	2010.06	16	DIN4 Function	Define digital input DIN 4. Default value 0010, Indicates the definition of the positive limit function

Kinco FD5 AC series servo driver user manual

D3.05	2010.07	16	DIN5 Function	Define digital input DIN5. Default value 0020, Indicates the definition of the negative limit function
	2010.1B	32	Positive limit position	Actual position when the digital input signal triggers the positive limit
	2010.1C	32	Negative limit position	Actual position when the digital input signal triggers the negative limit
	2010.19	8	Limit function define	The function of defining whether to alarm after the limit signal occurs0: If the limit signal appears after homing, it will alarm1: it will not alarm when the limit signal appears after homing
	607D.01	32	Positive setting of soft limit	Soft limit positive polarity data setting
	607D.02	32	Soft limit negative setting	Soft limit negative data setting, the negative data must be less than the positive data, otherwise the soft limit will not work
	6085.00	32	Quick stop deceleration	Stop deceleration after the limit signal takes effect

(1)Digital input limit digital

By installing the sensor in the machine and connecting the external sensor signal to the digital input signal port of the drive, when the sensor level changes, the positive and negative limit signals take effect, and the motor stops. For safety reasons, the positive/negative limit signals are normally closed. When the valid input is 1 (the valid input is green), the limit function is invalid. When the valid input is 0 (the valid input is gray), it means that the limit is activated and the corresponding movement direction is prohibited.

(2)Soft limit position

To prevent overtravel by setting the position of the software limit, it should be noted that the position of the software limit only takes effect after homing. When the actual position reaches the set software limit position, the motor stops.

6.8.2 Motor brake control

In order to ensure that the motor will not rotate under the influence of gravity or other external forces after the power is turned off, the load equipment needs to use a brake motor。 Please refer **3.4.4 Brake connection** for motor brake wiring, The default brake control port is OUT2. If you want to control the motor brake through other ports, you need to define the corresponding digital output signal function as motor brake.

Panel address	Internal address	Bit	Name	Description
D4.21	6410.17	8	Motor accessories	 Whether the motor has a brake accessory 0: Motor without brake 1: The motor has a holding brake, and the drive needs to wait for a period of time (holding brake delay) to fully open/close the holding brake
	6410.11	16	Brake duty cycle	The duty cycle of the brake signal
	6410.12	16	Brake delay	The delay time of the brake signal, the default value is 150ms
	605A.00	16	Quick stop mode	 0: Uncontrolled stop 1: Curve stop 2: Quick stop deceleration stop 5: The curve stops, and finally stops in the rapid stop state 6: Rapid deceleration stop, and finally stop in rapid stop state 18: Use the motor's own resistance to brake, even if there is a problem with the encoder Factory default is uncontrolled stop mode
	6085.00	32	Quick stop deceleration	Deceleration when quick stop mode is 2

Table 6-25 Brake control related objects

After the control word is written into the enable command, the servo motor is energized to lock the shaft, and the driver outputs 24V DC to the brake after the relay pull-in delay for a certain period of time (brake delay) to make the brake open as soon as possible. After the delay, the speed command takes effect and the motor starts to run.

When the stop enable command is written in the control word, the control of the holding brake is related to the set quick stop mode.

When the quick stop mode is 0 (uncontrolled stop), the drive will automatically switch to the immediate speed mode (-3) and set the target speed to 0 internally to make the motor stop as soon as possible, in the uncontrolled stop mode After the drive changes the target speed, it will immediately cut off the 24V power supply to the brake. After the brake power is cut off and lasts for a certain period of time (the brake delay), the drive actually enters the disabled state, and the motor is powered off and the shaft is released.

Figure 6-16 Motor holding brake sequence when the fast stop mode is 0

When the quick stop mode is 2 (quick stop deceleration stop), the drive automatically switches to speed mode (3) and decelerates to stop at quick stop deceleration (60850020) when it is disabled. Only after the drive judges that the effective target speed is zero speed , the drive will cut off the 24V brake power supply. After the brake power supply has been cut off for a certain period of time (the brake delay time), the drive will enter the disabled state, and the motor will be disconnected from the power supply.

Figure 6-17 Motor holding brake sequence when the fast stop mode is 2

Note

After the motor accessory is set to 1, the load drop will be disabled, and the brake delay can be appropriately increased. If adjusting the brake delay cannot improve the problem, check whether the brake torque meets the load demand.

6.8.3 Stop Mode Control

The motor can be stopped in the following ways:

0, uncontrolled stop; the motor will directly cut off the power to loosen the shaft without any control, and stop naturally by friction. After the stop is completed, the motor loosens the shaft. The uncontrolled stop mode has a longer deceleration time, but less mechanical impact.

1. The curve stops; it stops according to the trapezoidal deceleration (60840020) curve, and the motor loosens the shaft after the stop is completed.

2. Quick stop deceleration stop; stop according to the quick stop deceleration (60850020), and the motor loosens the shaft after the stop is completed.

Kinco FD5 AC series servo driver user manual

18, Short-circuit braking stop mode, use the motor's own resistance to stop. After the stop is completed, the motor keeps the shaft locked and stops in the fast stop state. It can be enabled after the control word sends 0x06 to exit the fast stop state. A stop mode that can quickly complete a stop even in the event of an encoder failure.

5, Stop according to the trapezoidal deceleration (60840020). After the stop is completed, the motor keeps the axis locked and stops in the fast stop state. It can be enabled after the control word 0x06 is issued to exit the fast stop state.

6, Stop according to the quick stop deceleration (60850020). After the stop is completed, the motor keeps the axis locked and stops in the quick stop state. It can be enabled only after the control word sends 0x06 to exit the quick stop state.

Table 6-26 Stop control objects

Panel address	Internal address	Bit	Name	Description
	605A.00	16	Quick stop mode	Quick stop mode Stop mode when bit2 in the control word is set to 0. For example: the control word is switched from 0x0F to 0x0B 0: Uncontrolled stop 1: Curve stop 2: Quick stop deceleration stop 5: The curve stops, and finally stops in the fast stop state 6: Rapid deceleration stop, and finally stop in rapid stop state 18: Use the motor's own resistance to brake, even if there is a problem with the encoder
	605B.00	16	Shutdown mode	Shutdown mode When the control word is switched to 0x06, the stop mode when the motor switches from the locked axis to the loose axis state 0: Uncontrolled stop 1: Curve stop 2: Quick stop deceleration stop 18: Use the motor's own resistance to brake, even if there is a problem with the encoder
	605C.00	16	Disable stop mode	Disable stop mode Stop mode when bit3 in the control word is set to 0. For example: the control word is switched from 0x0F to 0x07 0: Uncontrolled stop 1: Curve stop 2: Quick stop deceleration stop 18: Use the motor's own resistance to brake, even if there is a problem with the encoder
	605D.00	16	Pause mode	Pause mode Pause mode when bit8 in the control word is set to 1. For example: the control word is switched from 0x0F to 0x10F 1: Decelerate and stop at the current deceleration 2: Decelerate to stop at emergency stop deceleration
	605E.00	16	Error stop mode	Error emergency stop mode Error stop mode will be activated after an alarm in the motor shaft lock state. 0: stop immediately 1: Decelerate to stop 2: Use emergency stop deceleration to stop 18: Use the motor's own resistance to brake, even if there is a problem with the encoder
	6084.00	32	Trapezoidal deceleration	Curve stop deceleration
	6085.00	32	Quick stop deceleration	Emergency stop deceleration
	2340.01	08	Step stop mode	Step Mode Stop Enable It only takes effect under position control. When the position reaches the signal output, the motor uses the stepping method to lock the shaft (that is, the driver applies DC power to the motor to keep the motor in the locked shaft state), and the shaft locking current is set by the step stop current (2340.02).

				0: Do not use step mode stop enable 1: Use step mode to stop enable
	2340.02	16	Step stop current	Stop current after step stop mode is turned on

6.8.4 Absolute encoder motor configuration

Table 6-27 Absolute value encoder parameters

Panel address	Internal address	Bit	Name	Description	Default
D0.07	2690.00	8	Communication encoder data reset	Communication encoder command Write: 1: clear encoder status 2: Read the fault word, the fault status can be viewed at 0x30510110 3: Clear encoder status and multi-turn data 8 Reset the status flag of the encoder 9 Clear multi-lap data 10 Reset encoder status flag and clear multi-turn data operation 12 Clear the single-turn data (requires the manufacturer's password) Read: bit 0: 1 = Command can be entered bit 1: 1 = Last command execution completed Note: Clearing the single-turn data will cause the motor phase error. It is forbidden to clear the single- turn data when the motor can run normally!	1
	2680.00	16	Warning status word	Encoder alarm status word bit 0: battery alarm bit 1: Hybrid alarm (overspeed, overtemperature) bit 2: Encoder busy (motor speed too high at power- on) Note: When the drive has warning data, the panel will flash the warning status, and the warning status will not stop the operation of the drive.	0
	2340.0E	8	Encoder multi-turn prohibited	0: default 1: Use the multi-turn encoder as a single-turn encoder	0
	3051.01	16	Encoder warning message	help:encoder warning messages Nikon internal error of encoder .Bit0: BATT Bit1: MTERR Bit2: 0 Bit3: OVSPD Bit4: MEMERR Bit5: STERR Bit6: PSERR Bit6: PSERR Bit7: BUSY Bit8: MEMBUSY Bit9: OVTEMP	0

<u>6.8.4.1 Multi-turn motor power-on configuration</u>

When the YAK/YBK absolute encoder motor is connected to the driver for the first time, the driver will have 000.4 encoder UVW fault or communication fault alarm. The encoder alarm can be cleared by resetting the status mark of the encoder. The operation steps are as follows:

- Using the Kinco servo+ debugging software, write 10 through the communication encoder data reset (0x269000) on the basic operation interface to clear the multi-turn data and reset the encoder status flag.
- Access F000 group d0.07 from the driver panel to set communication encoder data reset.

Note

- After the communication encoder data is reset, the drive alarm will not be cleared directly. It is necessary to clear the drive alarm through the control word or restart the drive.
- After clearing the multi-turn fault, if the connection between the encoder wire and the motor end is disconnected, the drive will have fault 000.4 again, and the encoder state needs to be reset.
- After clearing the multi-turn data through the communication encoder data reset, the actual position single-turn data will not be cleared at this time. To reset the actual position, you need to use the 35 homing mode to return to the origin.

6.8.4.2 Multi-Circle Data Range

YAK/YBK absolute encoder motor single-turn resolution 8388608 (23bit), multi-turn number 65536, the actual position value after the positive multi-turn data overflow changes from 2147418112 to -2147418112, the negative multi-turn data overflow after the actual position value Changed from -2147483648 to 2147483648, the motor rotation direction remains unchanged after overflow.

Figure 6-18 Multi-circle data range

6.8.4.3 Multi-turn prohibition

Set encoder multi-turn disable (0x23400E) to 1, absolute encoder can be used as incremental encoder without connecting battery. However, it should be noted that when the multi-turn prohibition is turned on, the position of the encoder cannot be saved after the power is turned off.

6.8.4.4 Battery usage

To install the battery box at the bottom of the drive, select the ENCDG-(4) -Gu-BT5 cable and battery box BAT-FD5 cable. You can also choose to purchase the integrated battery cable ENCDG-(4)-GU-BT, and choose one of the two battery options.

Installation	Schematic diagram
Option 1: Integrated battery cable ENCDG-(4)-GU-BT. When using an integrated battery cable, secure the cable to prevent the connector from loosening, which may cause an alarm.	ENCDG-(4)-GU-BT

Table 6-28 Selecting and installing a battery box

When the battery voltage is below 3.1V, the driver appears the warning status word 0001 and the panel will flash 000.1, but the driver will not alarm stop at this time. Under the condition that the driver remains properly powered and the encoder cable is properly connected, the battery replacement will not cause multiple data loss. When the battery voltage is lower than 2.5V, the encoder UVW fault or internal fault (fault code 000.4) occurs in the driver. At this time, the motor stops running, the data is lost in multiple turns, and the absolute encoder needs to be re-initialized after the battery is replaced.

Figure 6-19 Battery box disassembly method

Note

- The battery must be used within a limited temperature range, away from high temperature and humidity, and free of dust and inflammable and explosive substances.
- The battery must be used within a limited temperature range, away from high temperature and humidity, and free of dust and inflammable and explosive substances.
- Do not impact or squeeze batteries during transportation and assembly to avoid battery damage.
- If the battery cable is placed for a long time, check whether the battery has expanded shell before use.
- Do not short-circuit the positive and negative terminals of the battery; otherwise, the battery may burst.
- The battery is disposable. Do not charge the battery.
- Batteries must be discarded according to local regulations.

Table 6-29 Battery Specifications

Battery name	Lithium thionyl chloride battery
Model	Maxell ER6C WK P
Standard voltage	3.6V
Standard capacity	1800mH
Maximum Output Current	100uA
Weight	14.5g
Storage temperature	-20°C~85°C

Chapter 7 Performance regulation

Figure 7-1 Servo system control block diagram

Figure 7-1 shows the servo system control block diagram. It can be seen from the figure that the servo system generally includes three control loops: current loop, velocity loop and position loop.

The adjustment process of a servo system is used to set loop gain and filters to match the mechanical characteristics, and finally to prevent the entire system from oscillating, to permit it to follow commands quickly and to eliminate abnormal noise.

- kaff: Position loop acceleration feedforward
- kvff: Position loop speed feedforward
- kvp: Velocity loop proportional gain
- kvi: Velocity loop integral gain
- kpp: Position loop proportional gain

7.1 Auto-tuning

Theauto-tuning function of servo drive is to enable the motor and drive the load to carry out small reciprocating motion and automatically measure the inertia ratio and load rigidity class. If the inertia self-tuning is successful, the drive will automatically write the rigidity level according to the tuning result.

Figure 7-2 Auto-tuning

7.2Auto-tuning test operation method

When inertia auto-tuning is opened, motor shaft will reciprocate in a very short distance. So please keep some mechanical space before using.

7.2.1 Auto-tuning function related object parameters

Table 7-1 Auto-tuning function parameters

Panel address	Object index	Name	Description	Default	Range	R: read W: write S: save
tn01	0x304008	Stiffness	Stiffness of the load	12	0-31	RWS
tn02	0x30400B	Inertia_Ratio	Inertia_Ratio=(J_Load+J_Motor)*10/J_M otor	30	10-500	RWS
tn03	0x304001	Tunning- method	Start auto-tuning after write 1 in.			RW
tn04	0x304006	Safe_Dist	Unit:0.01 Set the possible motion range during inertia measurement	22	0-40	RWS

7.2.2Introduction to the operation of digital tube key and upper computer software self-tuning method

1. Auto-tuning panel key operation

Open the tunE menu in the LED panel and go to tn03.

Write 1 to tn03. The motor oscillates with a small amplitude, the oscillation lasts less than 1s.

If tn03 remains at 1 after auto-tuning is done, auto-tuning has been successful. Otherwise it has failed.

2.Auto-tuning PC software operation

Click upper computer menu item Controller->Operation Modes->Auto-tuning.

Ν	Index	Туре	Name	Value	Unit
0	304001	int8	Tuning_Method	0	DEC
1	304006	uint16	Safe_Dist	22	DEC
2	304007	int32	EASY_KLOAD	-1	DEC
3	304009	int8	Inertia_Get_Result	0	DEC
4	304008	uint8	Stiffness	15	DEC
5	30400B	int16	Inertia_Ratio	16	DEC
6	304105	uint8	WriteFUN_CTL	0	DEC

Figure 7-3 Auto-tuning window

First set the "write function permission control" object parameters of the address to 0x304105 to 1, and set the "setting mode" object parameters of the address to 0x304001 to 1, then the motor shaft in a very small distance began to do reciprocating motion, setting time does not exceed 1s, and get the setting result parameters.

The values in the parameters of the Inertia Test Result Flag on the last address 0x304009 reflect the final setting of the result parameters.

Users can also increase the motion range of inertia measurement by increasing the value of the object parameter of "inertia measurement operating range", so as to obtain more accurate setting result parameters. If the mechanical dither is large during the self-tuning process, the setting value of this object parameter can be appropriately reduced.

7.2.3Problems and adjustments with auto-tuning

If the tuning process has failed, the error result of tn03 tells the fail-reason:

- 0: The controller could not be enabled by any reason.
- -1: Inertia cannot be measured due to too little motion or too little current.
- -2: The measured inertia result is outside the valid range.

-3: The resulting Inertia_Ratio value is greater than 250 (inertia ratio > 25). This is a possible result, but the control loop will not be tuned.

-4: The resulting Inertia_Ratio value is larger than 500 (inertia ratio > 50). This is an uncertain result.

In the cases 0, -1, -2, -4 Inertia_Ratio is set to 30, in the case -3 Inertia_Ratio is set as measured, Stiffness is set to 7-10. In any fail case the control loop parameters are set to Inertia_Ratio of 30 and the set Stiffness values. To make the measured Inertia_Ratio of case -3 become effective, the value of tn02 must be confirmed by SET.

Reasons for the failure of auto-tuning:

1.Incorrect wiring of the servo system;

2.DIN function Pre_Enable is configured but not active;

3. Too much friction or external force is applied to the axis to be tuned;

4. Too big backlash in the mechanical path between the motor and the load;

5. The mechanical path contains too soft components (soft belts or couplings);

6.Inertia ratio is too large

Adjustment:

1. Try to increase the value of the "Safe_dist" parameter to perform auto-tuning again;

2.If it still fails, manually adjust the performance.

7.2.4Adjustment after auto-tuning

After auto-tuning the stiffness is set to a certain value. The greater the inertia ratio, the smaller the stiffness value will be. The range of parameter after auto-tuning is shown below.

Table 7-2 Stiffness table

Stiffness	Kpp/[0.01HZ]	Kvp/[0.1Hz]	Output filter[Hz]	Stiffness	Kpp/[0.01HZ]	Kvp/[0.1Hz]	Output filter[Hz]
0	70	25	18	16	1945	700	464
1	98	35	24	17	2223	800	568
2	139	50	35	18	2500	900	568
3	195	70	49	19	2778	1000	733
4	264	95	66	20	3334	1200	733
5	334	120	83	21	3889	1400	1032
6	389	140	100	22	4723	1700	1032
7	473	170	118	23	5556	2000	1765
8	556	200	146	24	6389	2300	1765
9	639	230	164	25	7500	2700	1765
10	750	270	189	26	8612	3100	1765
11	889	320	222	27	9445	3400	00
12	1056	380	268	28	10278	3700	00
13	1250	450	340	29	11112	4000	00
14	1500	540	360	30	12500	4500	00
15	1667	600	392	31	13889	5000	œ

Note

When the rigidity or inertia ratio is modified so that the Kvp is greater than 4000, then increasing the rigidity has no effect on the performance adjustment, and increasing the inertia ratio will reduce the bandwidth. For encoders with resolutions below 8000ppr, rigidity class is set to a maximum of 22. If the rigidity is changed through communication, set the write function permission control to 1 before changing the rigidity. After the rigidity is changed, set the write function permission control back to 0.

The adjustment of stiffness according to actual needs

If response is too slow \rightarrow increase stiffness. If oscillation or noise increases \rightarrow reduce stiffness.

If the command from the controller (e.g. PLC) is unreasonable or inappropriate for the machine, some filters should be modified in order to reduce oscillation (see chapter 7.3 manual tuning)

7.3 Manual tuning

The final setting parameters obtained through the self-tuning process cannot meet the user's field requirements or when there is mechanical clearance, inertia change or flexible connection, the requirements can be achieved by manual adjustment. The parameters of speed ring and position ring should be adjusted during debugging. The speed ring parameter is related to the load inertia of the whole mechanical system converted to the motor shaft. The position ring is the outermost control ring of the servo system and is related to the motor action mode, that is, the field application. The current ring is the innermost control ring in the servo system, and the current ring parameters are related to the motor parameters. After the motor is correctly configured, the system defaults the current ring parameters to the best parameters of the configured motor, so there is no need to adjust again. Manual adjustment is required to work with the oscilloscope to capture the data waveform. Please refer to Section 5.6 when using the oscilloscope.

7.3.1Tuning of the velocity loop

Table 7-3 Velocity loop parameter

Panel address	Internal address	Name	Description	Default	Range
	60F901	kvp[0]	Setting reaction speed of Velocity loop	/	1-32767
d2.01	2FF00A	Velocity_BW	Changing this parameter changes kvp[0] by the inertia ratio	/	1-700
	60F902	Kvi[0]	Integral velocity loop gain	/	0-1023
d2.02	60F907	Kvi/32	It is 1/32 of Kvi , used for high resolution encoder.	/	0-32767
	2FF019	Kvi_Mix	The value of this parameter is 0x60F902 cross 32 plus 0x60F907. Writing this parameter sets 0x60F902 to 0, and the value is 0x60F907	/	0-16384
d2.05	60F905	Speed_Fb_N	Used to set Velocity feedback filter bandwidth. Filter bandwidth=100+Speed Fb N*20	7	0-45
d2.06	60F906	Speed_mode	Used to set the velocity feedback mode 0: 2nd order FB LPF 1: Directly feedback the original velocity 2: Velocity feedback after velocity observer 4: Velocity feedback after 1st order LPF 10: Velocity feedback after 2nd order LPF and the velocity command is filtered by a 1st order LPF. Both filters have the same bandwidth. 11: The velocity command is filtered by a 1st order LPF 12: Velocity feedback after velocity observer, the velocity command is filtered by a 1st order LPF 14: Velocity feedback after 1st order LPF and the velocity command is filtered by a 1st order LPF 14: Velocity feedback after 1st order LPF and the velocity command is filtered by a 1st order LPF. Both filters have the same bandwidth Bit7: 1 : Use 8K Velocity loop sampling frequency and 2K position loop sampling frequency (for 23-bit encoders) 0 : Use 4K Velocity loop sampling frequency and 1K position loop sampling frequency	0	/
	60F915	Output_Filter_N	A 1st order lowpass filter in the forward path of the velocity loop	1	100-1370
	60F908	Kvi_Sum_Limit	Integral output limit of the velocity loop	/	0-2^15

The velocity loop adjustment steps are as follows:

Step 1: Adjustment for Kvp

Increasing Kvp can improve the bandwidth of the velocity loop and make the velocity response ability faster. To calculate the Kvp, please refer the following formula.

$k_{\rm VP} = \frac{1.83}{1.83}$	$53358080 \times 10^5 \times J \times \pi^2 \times B$
ĸvp =	$I_{Max} \times Kt \times Encoder$
Kt	Motor torque constant, unit N.m/Arms*100
J	Inertia, unit kg*m^2*10^6 B
В	Velocity loop bandwidth unit: Hz
Imax	MAX mortor current(6510.03), unit: DEC
Encoder	Resolution of the encoder

Because the -3 of Operation_mode has no acceleration and deceleration and does not participating the velocity loop control, the -3 mode and automatic flip mode can be used to run the motor when adjusting the velocity loop parameters. During the reciprocating motion, the responsiveness of the servo can be monitored by collecting the speed step curve

If the Kvp too low, the bandwidth of the velocity loop and the position loop will not match, which will lead to oscillation. If the Kvp is too high, it will cause the speed to overshoot and cause the speed loop to oscillate. In some rigid connection loads (such as ball screw, rack and pinion, etc.) The Kvp should be as high as possible. By comparing the oscillograms under different Kvp, find

the optimal curve - the actuall speed curve should be tight follows the target command and does not have velocity oscillations.

Figure 7-4 Speed step curve after Kvp adjustment

Speed step curve: Curve that shows rise/fall changes.
The vibration and noise of the motor can be felt by hand touch and listening

Step 2 : Adjustment for Kvi

Kvi is designed to eliminate static errors. It can strengthen the low frequency gain of the velocity loop, and a large Kvi can reduce the response ability from low-frequency disturbance, thereby improving the anti-disturbance capability in low-frequency. When Kvi is too small, The integral time will be long. The error adjustment will be slow, and it will take longer time to make the system entering steady state. When the integral gain of the speed loop is too large, the error will appear and in severe cases, the motor may oscillate. Kvi should be adjusted to the servo eliminating the error and enter a stable state efficiently.

Figure 7-5 Speed step curve after Kvi adjustment

Generally, if the machine has more friction, the kvi should be set larger. If the entire system needs to respond quickly, kvi should be set as small as possible . If you need to dynamically close kvi during operation, you can use the kvi close in Din function.

- Note
 - Kvi32=1/32 of Kvi[0], In high resolution encoder, directly increasing the data in the kvi[0] will lead to overshoot. At this time, you can reduce the data in kvi[0], and fine-tune it in the kvi32
 - Generally, the parameters of kpp and kvi are relative. When the kpp data is adjusted to be much larger than the factory value, the kvi should also be appropriately increased on the basis of the factory value.

Step 3: Adjustment of Kvi Sum Limit

The Kvi_sum_Limit is the maximum current limit when performing adjustment。 Usually the default value can satisfy most applications. However, if the application system has a large resistance or the acceleration is too large, so that the actual current has reached the Kvi_sum_limit current, and at the same time, the actual speed is far less than the target speed. The value of this parameter should be increased. If the output current is prone to saturation, but the saturated output current will cause low frequency oscillations, this parameter should be reduced.

The Kvi_sum_limit should be as small as possible on the basis of satisfying the application. The smaller the Kvi_sum_limit value, the shorter the adjustment time.

Step 4: Adjustment for Speed fb N

Feedback filter can reduce noise from the feedback path, eg, encoder resolution noise.

For different applications, the speed feedback filter can be converted to 1st and 2nd order by Speed_Mode.

1st order can reduce more noise, but produce less phase shift, allowing the higher Kvi or Kvp. 2nd order filter reduces more noise, but also provide more phase shift, which can limit the Kvi or Kvp.

Usually, if the machine and the load use soft connection, it is recommended to use a 1st order low-pass feedback filter or turn off the feedback filter. If the rigid connection is used or the load is too heavy, the 2nd order low-pass feedback filter could be used. Factory default is a 2nd order low-pass feedback filter, which is suitable for most applications.

If the motor noise is too loud when adjusting the Kvi or Kvp, you can appropriately reduce the speed feedback filter

parameter(60F9.05). However, the velocity loop feedback filter bandwidth F must be greater than 2 times of the velocity loop bandwidth. Otherwise, oscillation may result. Speed feedback filter bandwidth F = speed feedback filter*20+100 [HZ]

Step 5: Adjustment of output filter

The output filter is a first order low pass torque filter. It can reduce the high-frequency torque order output by the speed control loop, so as to achieve the purpose of suppressing the resonance of the entire system.

When the output filter is set to 2546Hz (1DEC), it means to close the output filter control. When the system has resonance, the user can try to adjust the DEC value of the output filter setting from small to large to reduce noise.

The output filter frequency can be calculated by the following formula:

$$f = \frac{1}{2 \times \pi \times Ts \times Output \ Filter \ N}$$

1

Output_Filter_N Output filter setting(60F9.15), Unit DEC Ts Constant 62.5us

İ

- The larger the DEC value set by the output filter, the stronger the filtering effect.
- Output filter settings [Hz]=2546/[DEC]
- Output filter settings [DEC]=2546/[Hz]

Step 6: Notch Filter Adjustment

Note

A notch filter can suppress the resonance frequency by reducing the gain near the mechanical resonance.

If the resonant frequency is unknown, it can be obtained by flowing method:

Adjust the load so that the system runs in the resonance region, monitor the actual current at resonance on the oscilloscope, and then adjust the notch filter to observe whether the resonance disappears. When the current data at resonance is collected on the software oscilloscope, the period value of adjacent harmonics can be measured by the cursor to calculate the resonance frequency. After collecting multiple sets of harmonic cycles to calculate the average value of the cycles, the resonant frequency can be calculated using the average value of the cycles.

Table 7-4 Notch filter parameter

Panel address	Internal address	Name	Description	Default	Range
d2.03	60F903	Notch filter			
	250B01	Notch filter 1	Used to set the frequency of the internal notch filter to eliminate the mechanical resonance that occurs when the	550	0.00
	250B02	Notch filter 2	motor drives the machine	550	0-90
	250B03	Notch filter 3			
			Notch filter control of Speed loop Bit0~1: The BCD code composed of two bits determines the filter to be turned on.		
d2.04	60F904	Notch filter control	 Bit4 : 1 :Indicates FFT analysis using actual current , 0 :Indicates that the target current is used for analysis Bit5 : 1: Indicates use actual speed for FFT analysis , 0: Indicates do not use actual speed for FFT analysis Bit.7 : 1 Indicates that the FFT function is turned on, it will automatically become 0 after the analysis is completed, and it can only be turned on in the enabled state. 	0	0-255

(1) Single-point notch filter

When the notch filter control (60F9.04) is set to 0, it indicates to close the notch filter control; when set to 1, it indicates to open a single notch filter, and the frequency of the filter is set by the notch filter (60F9.03).

Table 7-5 Single point notch filter debugging case

Instruction	Process
Limit output current of drive	Enter D2.14 of F002 through the panel to adjust the MAX output current RMS or adjust the target current limit through the basic operation interface of the servo software.
Use the oscilloscope to collect the current waveform in the resonance region. Note that when collecting the current with the oscilloscope, the sampling period should be set as small as possible, otherwise the resonance waveform may not be collected.	KG 可認識 留給除容(0.0月到開催(0.05)*7605 2.67319921375 78.88年代目1000 2.67319921375 97.1639 2.67319921375 97.1639 2.67319921375 97.1639 -0.5000078125 97.1639 -0.5000078125 97.1639 -0.5000078125 97.1639 -0.5000078125 97.1630 -0.5000078125 97.1630 -0.5000078125 97.1630 -0.5000078125 97.1717.1530 -0.5000078125 97.1717.1530 -0.5000078125 97.1717.1530 -0.5000078125 97.1717.1530 -0.5000078125 97.1717.1530 -0.5000078125 97.1717.1530 -0.17171750 97.1717.1530 -0.17171750 97.1717.1530 -0.17171750 97.1717.1530 -0.17171750 97.1717.1530 -0.17171750 97.1717.1530 -0.17171750 97.1717.1530 -0.17171750 97.1717.1717 -0.17171750 97.1717.1717 -0.1100 97.1717.1717 -0.1100 97.1717.1717 -0.1100 97.1717.1717 -0.1100 97.1717.1717 -0.1100 97.1717.1717 -0.1100 97.1717.1717 <t< td=""></t<>
Observe the resonant frequency with an oscilloscope and calculate the notch filter setting value based on the frequency	The resonant frequency in the figure is 200Hz, the notch filter control is set to 1, and the notch filter is set to 200Hz

Note

• To prevent damage to the machine due to large resonance amplitude during debugging, you can adjust the notch filter after lowering the target current limit value.

(2)FFT Multi-point Notch Filter

Adopt high-order multi-point notch filter technology, automatically measure the mechanical resonance frequency of the load, and write the tuning result into the filter 0 and filter 1. The FD5 drive can be set with 4 notch filters, and the FFT will be adjusted according to the setting value of the notch filter control. Filter 2 and Filter 3 are manually adjusted notch filters, and the corresponding filters can be turned on/off through the notch filter control..

When the notch filter control (60F9.04) is set to 144DEC, it indicates that the actual current is used for FFT analysis. When the notch filter control (60F9.04) is set to 160DEC, it indecates that the actual speed is used for FFT analysis. When the FFT is successfully tuned, the notch filter control bit7 to reset, and the BCD code combined with bit0 and bit1 determines the filter to be turned on.

7.3.2 Position loop tuning method

Panel address	Internal address	Name	Description	Defaults	Range
d2.07	60FB01	Kpp[0]	Set the response bandwidth of the position loop, unit: 0.01Hz	10	0~327
d2.08	2FF01A	K_Velocity_FF‰	0 means no feedforward, 1000 means 100% feed forward	1000	0 ~ 4000
d2.09	2FF01B	K_Acc_FF‰	The unit only is right if the inertia ratio is correctly set. If the inertia ratio is unknown, set K_Acc_FF(60FB.03)instead	/	0-4000
d2.26	60FB05	Pos_Filter_N	The time constant of the position demand LPF. Unit:ms	1	1~255
d2.25	2FF00E	Max_Followin_error_16	Maximum allowable error(6065.00)=100* Max_Following_error_16.	10000	/
	60FB04	Position loop filter order	Setting value: 1: Use trapezoidal curve mode 3: Use S-shape mode	1	1 or 3

Table 7-6 Position loop parameters

Position loop tuning steps:

Step 1: Kpp adjustment

Increasing the Kpp can increase the position loop bandwidth to reduce the positioning time and the following error, but if the setting is too large, it will cause noise or even oscillation, and it must be set according to the load conditions. Kpp = 103 * position loop bandwidth. The bandwidth of the position loop cannot exceed the bandwidth of velocity loop. It is recommended that the setting value of the position loop bandwidth be less than one quarter of the bandwidth of the velocity loop.

Step 2: Kvff adjustment

Increasing the Kvff can reduce the position following error and improve the dynamic response characteristics of the entire system, but it may lead greater overshoot during acceleration and deceleration. When the position command signal is not smooth, reducing the Kvff can reduce the motor oscillation. When the feedforward is set to 0, if only the Kvp is used to position the servo, the inposition time will be longer.

Kvff function can be regarded as the upper controller, such as PLC, has the opportunity to directly control the velocity in position operating mode. In fact, the function will consume part of the speed loop responsiveness, so the setting value needs to match the position loop and velocity loop bandwidth.

The elastic factor of the flexible load, such as pulley, will cause the speed feedforward command loaded to the speed loop to be unsmooth and cause the load to oscillate. In this type of load, the position loop speed feedforward can be appropriately reduced. In a rigid load, if adjusting the Kpp cannot eliminate the vibration generated by the motor during acceleration and deceleration, you can also try to gradually decrease the default 100% feedforward.

Figure 7-6 Speed step curve after Kvff adjustment

Step 3: Kaff adjustment

Users are not advised to adjust this parameter. When the practical application requires very high position loop response, the acceleration feedforward can be adjusted to improve the response performance.

The acceleration feedforward function can be seen as the upper controller has the opportunity to directly control the torque in the position operating mode. This function actually consumes some of the current loop responsiveness, so if the settings do not match the Kvp and velocity loop bandwidth, overshoot and oscillation will occur.

Also, the velocity feed forward to the velocity loop may not be smooth and has some noise signal inside, so a large velocity feed forward value will also amplify the noise.

Kaff can be calculated by following function:

ACC_%= 6746518 / K_Acc_FF / Easy_Kload * 100

ACC_% This means what percentage will be used for acceleration feedforward.

K Acc FF Kaff(60FB.03), calculates the final internal factor of the feedforward.

Easy_Kload Inertia Coefficient in Easy Mode (3040.07) Load coefficient calculated from auto-tuning or direct user input inertia ratio.

Note

The smaller the value of the K_Acc_FF parameter, the greater the position loop acceleration feedforward.

Step 4: Smooth filter adjustment

The smoothing filter is a moving average filter. It filters the velocity commands from the velocity generator to make the velocity and position commands smoother. Using this filtering causes velocity and position commands to be delayed in the drive. So for some applications, like CNC, it is better not to use this filter, but to do the smoothing in the CNC.

Smoothing filters reduce machine influence by smoothing commands. Smoothing Filter (60FB.05) defines the time constant of this filter in ms. Under normal circumstances, if the machine system vibrates when starting and stopping, it is recommended to increase the smoothing filter setting.

Step 5: other adjustment

In position mode (operation mode 1), the position loop commend filter control(60FB.04) can be set to 3 to enable the S-curve control. This curve has no command delay and is suitable for long-distance positioning control. When the speed step of the trapezoidal speed curve is large, it will cause a certain impact on the mechanical equipment. The S-shaped curve has better flexibility and smooth acceleration and deceleration, which can effectively overcome the mechanical vibration caused by the sudden change of speed.

Figure 7-7 S-shaped speed step curve

7.4 Gain switch (Pro mode)

这个功能只用于高端应用!

This function is only used for professional !

the drive support 4 sets of PI gain settings. Each set includes Kvp, Kvi, Kpp. The actual PI parameters used are Kvp (x), Kvi (x), and Kpp (x). x=data of PI pointer.

Internal address	Туре	Name	Description	unit
64F9.01	Uint16	Kvp[0]		Dec, Hz
60F9.02	Uint16	Kvi[0]	Gain parameter called when PI pointer is 0	Dec
60FB.01	Int16	Kpp[0]		Dec. Hz
2340.04	Uint16	Kvp[1]		Dec, Hz
2340.05	Uint16	Kvi[1]	Gain parameter called when PI pointer is 1	Dec
2340.06	Int16	Kpp[1]		Dec. Hz
2340.07	Uint16	Kvp[2]		Dec, Hz
2340.08	Uint16	Kvi[2]	Gain parameter called when PI pointer is 2	Dec
2340.09	Int16	Kpp[2]		Dec. Hz
2340.0A	Uint16	Kvp[3]		Dec, Hz
2340.0B	Uint16	Kvi[3]	Gain parameter called when PI pointer is 3	Dec
2340.0C	Int16	Kpp[3]		Dec. Hz

Table 7-7 Gain switch parameters

Kinco FD5 AC series servo driver user manual

Chatper 7 Performance regulation

60F9.28	Uint8	PI point	Indicates the PI parameter being called	Dec
60F9.09	Uint8	Auto PI switch	When the target position/target speed is reached, that is, when bits.Target_reached=1, select the PI parameter, which is suitable for the occasions where different PI parameters need to be used during the motion process and the static state: 0: PI pointer (60F9.28)=0; 1: PI pointer (60F9.28)=1;	Dec

7.4.1 Gain switching method

The drive provide three method for dynamically selecting PI control parameters.

Method 1: Switch PI by digital input:

Configure the function gain switch 0 or/and gain switch 1 at the digital input port, and the value of the PI pointer is the BCD code composed of the input:

Bit0: Gain switch 0

Bit1: Gain switch 1

Table 7-8Correspondence between gain switching and PI pointer

Gain switch 0 Effective input level	Gain switch 1 Effective input level	Value of PI pointer	
1	0	1	
0	1	2	
1	1	3	

For example:

DIN3	Gain Switch0	>>	×	•	•
DIN4	Gain Switch1	>>	×	•	•

Figure 7-8 Gain switch definition

Gain switch 0 = 1, Gain switch 1 = 0, so PI pointer =1, Valid PI parameter is Kvp[1], Kvi[1], Kpp[1]

Method 2: Drive auto switch PI

Set auto switch PI (6069.09) = 1: When the motor is running, the PI pointer is 0; when the motor is in the position to or the motor zero speed state, the PI pointer is 1.

Some equipment with large inertia may be affected by inertia or elastic force and vibrate when it decelerates to stop. At this time, switching flexible PI parameters helps to achieve efficient shutdown. Automatic PI switching is suitable for applications where different PI parameters are required for these motors in running and stopped states. If the gain switching function is defined on the digital input port, the automatic gain switching will be invalid.

Method 3: Set PI pointer value directly through communication

7.5 Other factors affecting performance

Control commands created by a controller (e.g. PLC).

Control commands should be as smooth as possible and must be correct and reasonable. For example, the acceleration in the control command cannot exceed the maximum acceleration that can be produced by the motor torque. By collecting the speed and current step waveforms, during the acceleration process, when the current is saturated and clipped, the acceleration and deceleration can be appropriately reduced or the smoothing filter can be increased.

The control command should obey the bandwidth limit of the control loop. **Mechanical design**

In applications, performance is often limited by the machine. Various factors can affect the final control performance. Control performance will affect the final performance of the machine such as accuracy, responsiveness and stability.

Chapter 8 Alarm Investigation

When the drive alarms, the drive panel flashes an alarm code. For more detailed error messages and error history, connect the drive to your computer using an RS232 serial cable

Table 8-1 Alarm codes of Error_State1

Alarm	Name	Reason	Troubleshooting
FFF.F	Wrong motor model	The current motor model is different from the motor model saved by the drive	Action 1: Enter the EA01 by pressing the button to enter the correct motor code and set the EA00 to 1. Action 2: Enter the motor code through the motor model (0x641001) of the upper computer software, and save the motor parameters to restart the drive. Action 3: Use the host software to find the EASY_MT_TYPE(0x304101) parameter, confirm its value, and then save the parameter. Note: The Motor code can be confirmed by the motor code in the motor nameplate
000.1	Extended Error	Error status word 2 alarm	Press the SET key to enter the error status word 2 (D1.16), and check the error meaning according to the alarm code in Table 8-2.
000.2	Encoder not connected	Encoder cable error or not connected; The presence of a 400.0 alarm indicates that the communication encoder is not responding	Step 1: Make sure that the encoder between the driver and the motor is properly connected and the cable is firmly connected. Step 2: Use the EA01 or the host software to check whether the motor model 0x641001 is correctly set. When the motor model is abnormal, use the internal motor library (0x304106) to change to 1 and re-enter the motor model
000.4	Encoder internal	Multi-turn absolute encoder multi-turn data is invalid, need to reset	Step 1: Press the button to enter d0.07 and set the data to 10, or modify the communication encoder data reset (0x269000) to 10 through the host software. Step 2: Reset the faulty or restart the drive. If the error persists, check whether the battery cable is securely connected, and try to replace the battery cable or compare the motor.
000.8	Encoder CRC	Motor model setting error; Encoder wiring error or external interference caused;	Step 1: Check whether the motor code set is consistent with the connected motor through EA01 or the upper computer software Step 2: Check whether the encoder is properly wired and securely connected. Step 3: The encoder signal cable is broken, try to replace the encoder cable.
001.0	Controller Temperature	The temperature of controller's power module has reached the alarm value.	Step 1: Check whether the motor and drive power meet the requirements;Step 2: Check whether the driver cooling fan can be opened normally, whether the heat dissipation port is blocked, and take heat dissipation measures in the electrical cabinet.Step 3: The power circuit inside the driver is damaged. Replace the driver.

Chatper 8 Alarm investigation

			Chatper o hiarm investigation
002.0	Overvoltage	The DC bus voltage exceeds the overvoltage alarm point	Step 1: Check whether the power supply voltage is within the driver input voltage range and whether the power supply voltage is stable. Step 2: high-speed braking occasions feedback energy is too high, you can reduce the deceleration speed or connect the appropriate brake resistance.
004.0	Undervoltage	The power voltage input is lower than the low voltage protection alarm value.	Step 1: Check whether the power supply voltage is within the driver input voltage range and whether the power supply voltage is stable. Step 2: Power on the power supply and then the logic power supply, and ensure that the drive is connected to the power supply before enabling the power supply. Step 3: Reduce the acceleration to reduce the actual maximum power consumption.
008.0	Overcurrent	Instantaneous current exceeds the overcurrent protection value.	Step 1: Check whether the mechanical load is stuck and reset the fault. If the fault cannot be reset, go to the next step. Step 2: Remove the connection between the drive and the motor, shield the 400.2 alarm, after enabling the overcurrent alarm, the drive is bad, and the drive can be replaced. Step 3: Check whether there is a short circuit between the UVW and PE of the power line, replace the power line or compare the motor.
010.0	Chop Resistor	External brake resistance is overloaded	Step 1: Check whether the external brake resistance value and brake resistance power are set correctly on the panel or host computer.Step 2: The brake resistor power is insufficient, replace the brake resistor with a higher power.
		Internal brake resistance overtemperature	The power of the brake resistance inside the driver is insufficient. Please disconnect the short cable between DC+/RB1 and RB-end, and connect the appropriate external brake resistance between DC+/RB1 and RB-end.
		Internal brake unit damaged, brake circuit short circuit	After the driver is powered off, use a multimeter to measure the DC- and RB-ends. If the driver works properly, replace the driver.
020.0	Following Error	 The actual following error exceeds the set maximum following error value. The possible reasons are: 1. The motor cable is improperly connected 2. The control ring is too rigid 3. The maximum following error is set too small 4. Target speed exceeds maximum speed limit 5. The target torque limit is too small 6. The drive and motor cannot meet the requirements of the application 	Step 1: Make sure the power cable UVW is connected correctly Step 2: Readjust the gain and increase the rigidity. Refer to Chapter 7 for the rigidity adjustment method Step 3: Readjust the maximum follow error (0x606500) Step 4: Readjust the maximum speed limit (0x607f00) Step 5: Re-adjust the target torque %(0x607100) and the target current limit (0x607300), the target current limit cannot exceed the maximum motor current Step 6: Reduce the load or replace the motor with more power
040.0	Low Logic Voltage	The logic voltage is lower than the lower alarm limit	Step 1: Check whether the logical voltage is within the driver input voltage range and whether the power supply voltage is stable Step 2: The logic circuit uses a separate power supply
080.0	Motor or controller IIt	The motor or drive is overloaded for a long time, the possible reasons are: 1. Motor power line and encoder wiring error	Step 1: Check that cables are correctly connected Step 2: Measure whether the lock voltage is correct and determine the lock release when the driver is enabled
Kinco FD5	5 AC series servo	driver user manual	Chatper 8 Alarm investigation
-----------	------------------------	--	--
		 When the motor shaft is rotating, the lock is not loosened The drive control ring parameters are incorrectly set The mechanical device is stuck or the friction is too large 	Step 3: Adjust the parameters of the control ring Step 4: Eliminate mechanical jams and apply lubricant
100.0	Over frequency	External input pulse frequency is too high.	1, reduce the pulse frequency 2, when using more than 600KHz pulse, need to increase the pulse frequency control 0x250808(panel address D3.38) value.
200.0	Motor temperature	 Input port defines and triggers motor failure Motor temperature exceeds its characteristic value 	DIN cancels motor fault definition Reduce ambient temperature and improve cooling conditions Reduce acceleration and speed Load reduction
400.0	Encoder information	 Communication error during encoder initialization The encoder model is incorrect The internal data storage of the encoder is faulty The drive does not support the current encoder type 	Step 1: Make sure that the encoder between the driver and the motor is properly connected and the cable is firmly connected Step 2: Use the EA01 or the host software to check whether the motor model 0x641001 is correctly set. If the motor model cannot be modified, use the internal motor library (0x304106) to 1 and try again Step 3: Replace the motor and compare
800.0	EEPROM data	When EEPROM reads and write data, the data is damaged	Step 1: After initializing the control ring parameters, save the control parameters and restart the drive Step 2: Import the cdi file through the host software

Table 8-2: Alarm codes of Error_State2 (extended)

Alarm	Name	Reason	Trouble shooting
000.1	Current sensor	Current sensor signal offset or ripple too big	Step 1: The driver is well grounded to the motor Step 2: Current sensor circuit is damaged, replace the driver and compare
000.2	Watchdog	Software watchdog exception	Step 1: After initializing the control ring parameters, save the control parameters and restart the drive Step 2: After the motor model is set to 00, store the motor parameters and restart the drive
000.4	Wrong interrupt	Invalid interrupt exception	Step 1: After initializing the control ring parameters, save the control parameters and restart the drive Step 2: After the motor model is set to 00, store the motor parameters and restart the drive
000.8	MCU ID	 The software program does not match the hardware An MCU error is detected 	Step 1: Check the software version in the drive properties and update the correct software. Step 2: Replace the drive and compare the software
001.0	Motor configuration	 Motor model cannot be automatically identified EEPROM No motor data or the motor is not configured correctly The motor line is missing, and a phase of the power line UVW is not connected 	Step 1: Check whether the current motor model is correct through the motor configuration interface of the upper computer software. If the current motor model is abnormal, use the internal motor library (0x304106) to set to 1, store the control parameters after restarting the drive to reset the correct motor model and save. Step 2: Confirm that the UVW connection of the motor power line is reliable, and try to replace the power extension cable.
010.0	External enable	DIN function "pre_enable" is configured, but the input is inactive when the controller is enabled or should become enabled	User-defined alarm

Chatper 8 Alarm investigation

			· · · · · · · · · · · · · · · · · · ·
020.0	Positive limit	Positive position limit (after homing), position limit only causes error when Limit_Function (2010.19) is set to 0.	User-defined alarm
040.0	Negative limit	Negative position limit (after homing), position limit only causes error when Limit_Function (2010.19) is set to 0.	User-defined alarm
080.0	SPI internal	Internal firmware error in SPI handling	Please contact the supplier.
100.0	CAN bus fault	This function is enabled only when the Communication interruption mode $(0x600700)$ is set to 1	User-defined alarm
200.0	Closed loop direction	In full closed loop mode, the counting direction of the main encoder is opposite to that of the motor encoder	Step 1: Check the count direction of the main encoder and the count direction of the motor encoder, the count direction is inconsistent, please change the count direction of the main encoder (0x250A03) Step 2: The master encoder speed is not proportional to the motor encoder speed. Check the mechanical installation, exclude mechanical slippage or jammed, check the full closed spindle check (0x250A05) and full closed slave shaft check (0x250A06) and full closed loop ratio check (0x250A09) Settings.
400.0	The main encoder ABZ fault	Master encoder connection error	Check that the main encoder signal line is connected correctly
800.0	Master counting	Master encoder counting error	Step 1: Correctly fill in the main encoder period (0x250A01) and set it to 0 to disable check. Step 2: Check for interference

Table 8-3 Performance anomalies and solutions

Anomalies	Alarm reason	Solutions
Abnormal noise or vibration occurs when the motor runs without load	 Wiring error Improper handling of control loop parameters Improper installation of motor oil seal or motor failure 	 Use standard power cables, encoder cables and control cables to ensure that the cables are correctly wired and not loose or damaged. Initialize the control parameters—store the control parameters and restart and try to run Twist the motor bearing by hand to check whether the motor is abnormal, and try to reinstall the motor oil seal
Inaccurate positioning	 Improper control loop parameters The pulse data before the gear is inconsistent with the number of pulses sent by the controller The electronic gear ratio is set too large Accumulated error of reciprocating motion Mechanical system factors 	 Adjust the drive control loop parameters according to chapter 7.1 Use shielded twisted pair cables for pulse lines. When the cables are long, the diameter of the control lines should be appropriately increased. The pulse line should be kept away from the power line as far as possible, and the drive and the motor should be well grounded.

The EASY group allows users to quickly set commonly used control parameters.

Table 9-1 EASY parameters Panel Internal Description Defaults R/W/S Name Range address address Store control ring parameters (excluding Stores control ring motor parameters) EA00 2FF00108 0 0-255 RW 1, store all configuration parameters set parameters 10. Initialize all configuration parameters EA01 30410110 EASY motor Model Configuration motor model 404b / RWS Control instructions can be configured quickly by setting the instruction type. Note: Changing the instruction type will change the working mode and the definition of the IO port. 0: Dual-pulse mode CW/CCW 1: pulse direction mode P/D 2: A/B phase pulse control mode 8: Communication control mode RWS EA02 30410208 1 0~8 EASY instruction type When the instruction type is set to 0-2, corresponding to working mode -4, DIN will be configured to factory Settings. When the instruction type is set to 8, DIN4 and DIN5 are defined as positive limit and negative limit respectively, DIN7 is defined as origin mode, working mode and control word are controlled by communication. This parameter is valid when EA02 is Electronic gear 32767~ written to 0-2. EA03 25080110 1000 RWS -32768 molecule [0] The value is displayed in decimal by default. Values over 10000 are displayed in hexadecimal. Electronic gear 1~3276 EA04 25080210 Note: See Table 4 for the decimal and 1000 RWS 7 denominator [0] hexadecimal display methods. The simulated speed EA05 30410410 coefficient under 11 / RWS Set the analog speed factor EASY Digit tube from units to thousands (digit tube from right to left) represents: Bits: Load type, which affects control ring parameters 0: no load 1: Flexible load (such as belt, etc.) 2: Rigid load (such as ball screw) EASY application 30410310 1020 RWS EA06 Tens: applications that affect control ring Settings parameters 0: point-to-point mode (positioning control) 1: CNC mode (interpolation control) 2: master/slave mode Hundred position: Set the limit switch 0: Use the current limit switch setting

Kinco	FD5	AC	series	servo	driver	user	manual
-------	-----	----	--------	-------	--------	------	--------

			1: Block all limit switches Thousands: OUT5's drive fault polarity			
			0: The output is normally closed			
			1: The output is normally open			
EA07	60980008	Zero retturn modeE	Look for patterns at the origin	0	/	RWS

The Tune group is the driver inertia measurement related parameters.

Table 9-2 Tune parameters

Panel address	Internal address	Name	Description	Defaults	Range	R/W/S
Tn00	2FF00108	Stores control ring parameters	Store control ring parameters (excluding motor parameters) 1, store all configuration parameters set 10. Initialize all configuration parameters	0	0-255	RW
Tn01	30400808	Stiff	Rigidity class	15	0-31	RWS
Tn02	30400B10	Torque to inertia ratio	Inertia ratio = total load inertia/motor inertia *10	16	/	RWS
Tn03	30400108	Regulated type	Write 1 Enable the inertia measurement function. Do not write values other than 1. Note that writing 1 causes the external IO control signal to briefly lose control for 2 seconds. The working mode will be changed to 11	0	0、1	RW
Tn04	30400610	Inertia measurement operating range	Set the possible range of motion when measuring inertia in 0.01 turns	22	0-40	RW

F000 is drives order sets, the parameters could not be saved.

Table 9-3 F000 parameters

Panel address	Internal address	Name	Description	Defaults	Range	R/W/S
D0.00	60600008	Operation mode	Drives operation mode -4:Pulse mode -3: Immediate speed mode 4:Torque mode 1:position mode 3:speed mode 6:homing mode 7:interpolation mode	-4	/	RW
D0.01	2FF00508	Simple controlword	 000.0 : release motor , controlword write 6 000.1 : lock motor , default controlword write 2F, could be selected by 0x20200F. 001.0: clean error , controlword write 86 Note: To use the simplified control word, the digital input port cannot define the enable and reset fault functions. 	0	/	RW
D0.02	2FF00910	Target speed-rpm	3/-3 RPM in speed mode, unit: rpm	0	0~5000	RW
D0.03	60F60810	Target current q	It is used to set the input torque command (current command) when the drive works in 4 mode and d3.30 is set to 0 (no external analog control), the unit is DEC.	0	-2047~2047	RW

Kinco FD5 AC series servo driver user manual

			-			
D0.04	2FF00A10	Velocity loop bandwidth	Velocity loop bandwidth setting, unit Hz	59	0-600	RW
D0.05	2FF00B10	Position loop bandwidth	Position loop bandwidth setting, unit Hz	9	/	RW
D0.06	2FF00C10	Gain auto-tunning control		0	/	RW
D0.07	26900008	Communication encoder data reset	 Write: 1: clear encoder status 2: read fault word 3: Clear encoder status and multi-turn data 8: Reset status flag 9: Clear multi-lap data 10: write 8 and 9 Read: bit 0: 1 = Commands can be entered bit 1: 1 = The last command is executed 	0	/	RW
D0.08	2FF02310	Jog speed setting	Speed in jog mode, unit rpm	0	0~5000	RW
D0.09	23400D08	Keba	0:default 1:turn on remote node 40:Compatible with 2S panel parameter flags	0	0、1、40	RW

The F001 panel menu contains real-time data for panel monitoring when the drive has no fault alarms. After entering the F001 group by pressing the key, select the data address that needs to be displayed and hold down the SET key until the last decimal point at the bottom right of the panel lights up, indicating that the setting is successful. Hold down the MODE key to return to the monitoring screen. The selected data will be displayed on the monitoring panel.

Table 9-4 F	001 parameters					
Panel address	Internal address	Name	Description	Defaults	Range	R/W/S
D1.00	2FF00F20	Soft_Version_LED	Firmware version, display at the LED.	/	/	R
D1.02	2FF01008	Motor_IIt_Rate	Displays the rate of real iit and max iitof the motor.	0	0-100%	R
D1.04	2FF01108	Drive_IIt_Rate	Display the rate of real iit and max iitof the controller.	0	0-100%	R
D1.06	2FF01208	Chop_Power_Rate	Display the rate of real power andrated power of the chopper.	0	0-100%	R
D1.08	60F70B10	Temp_Device	temperature of controller, unit: °C,	/	/	R
D1.09	60790020	Real_DCBUS_mV	Dc bus voltage	/	/	R
D1.10	60F70C10	Ripple_DCBUS	Ripple voltage of DC bus	/	/	R
D1.11	20100A10	Din_Real	The actual status of the digital input port bit0: Din1 bit1: Din2 bit2: Din3 bit7: Din8	/	/	R
D1.12	20101410	Dout_Real	The actual effective output state of the digital output outlet is the result calculated by Dout state, Dout polarity and Dout	/	/	R

KINCO FD3	NU SELLES SEL	rvo driver user manual	Chatper 9	bervo pane	parameter.	1150
			simulation. Dout effective =(Dout state OR Dout simulation)XOR(NOT Dout polarity) bit0:Dout1 bit1:Dout2 bit2:Dout3 bit6:Dout7 Real-time alarm error status bit0: Extension error, read Error			
D1.15	26010010	Error_State	bit0: Extension error, read Error status 2(D1.16) bit 1: encoder not connected bit 2: encoder internal fault bit 3: encoder CRC error bit 4: driver temperature alarm bit 5: High voltage alarm bit 6: Low voltage alarm bit 7: overcurrent alarm bit 8: brake resistance alarm bit 9: excessive position error alarm bit 10: logic low voltage alarm bit 12: Pulse frequency is too high alarm bit 13: Motor temperature alarm bit 14: encoder information error bit 15: EEPROM alarm	0	0-65535	R
D1.16	26020010	Error_State2	bit 0: Current sensor error bit 1: watchdog error bit 2: interrupt error bit 3: MCU ID error bit 4: motor configuration error bit 5: logic output error bit 8: preenable error bit 9: Positive limit error bit10: Negative limit error bit11: SPI error bit12: CAN communication error bit13: full closed loop direction error bit14: master encoder ABZ error bit15: master encoder count error	0	0-65535	R
D1.17	60410010	Status word	Status word of controller	/	/	R
D1.18	60610008	Operation_Mode_Buff	Operation mode in buffer	0	/	R
D1.19	60630020	Pos_Actual	Actual position of motor	0	-2^31-2^31-1	R
D1.20	60FB0820	Pos_Error	Following error of position	0	-2^31-2^31-1	R
D1.21	25080420	Gear_Master	Input pulse amount before electronic gear	0	-2^31-2^31-1	RW
D1.22	25080520	Gear_Slave	Execute pulse amount after electronic gear	0	-2^31-2^31-1	RW
D1.23	25080C10	Gear front pulse frequency	Spindle input pulse speed rate (pulse/ms)	0	-32768-32767	R
D1.24	25080D10	Gear front pulse frequency	Spindle input pulse gear ratio pulse speed (pulse/ms)	0	-32768-32767	R

Kinco FD5 AC series servo driver user manual

D1.25	2FF01410	Real_Speed_RPM	Real speed, unit: rpm	0	0-15000	R
D1.26	60F91910	Real_Speed_RPM2	Real speed, unit: 0.01rpm	0	-10-10	R
D1.28	60F60C10	CMD_q_Buff	q current command buffer	0	-2048-2047	R
D1.29	2FF01800	I_q_Arms	Real current in q axis, unit 0.1 Arms	0	/	R
D1.48	26800010	Warning_Word	warning status word of the encoder Bit 0: Battery Warning Bit 1: Mixed Warning Bit 2: Encoder Busy	0	0-7	R
D1.49	30440008	Cur_Index of Table	Range: 0-31, current index in the position table	0	0-31	R
D1.50	30101420	Encoder error statistics	Incremental encoder ABZ signal loss count	0	0-2^32	RW

The F002 Group panel menu contains the parameters that the control ring needs to set. Table 9-5 F002 parameters

Panel	002 parameters Internal	Name	Description	Defaults	Danca	R/W/S
address	address	Name	Description	Defaults	Range	K/W/S
D2.00	2FF00108	Store_Data	Save or init parameters 1: save control parameters 10: init control parameters	0	0-255	RW
D2.01	2FF00A10	Velocity_BW	Bandwidth of the velocity loop, unit: Hz.	/	1-700	RWS
D2.02	2FF01910	Kvi_Mix	Integral gain of the velocity loop, as a combination of 32*Kvi(60F9.02) + Kvi/32(60F9.07). When written, it		0- 65535	RWS
D2.03	60F90308	Notch_N	NotchfilterfrequencyBW=Notch_N*10+100[Hz]	45	0-127	RWS
D2.04	60F90408	Notch_On				RWS
D2.05	60F90508	Speed_Fb_N	Bandwidth of velocity feedback filter BW=Speed_Fb_N*20+100[Hz]	7	0-45	RWS
D2.06	60F90608	Speed_Mode	0: 2nd order FB LPF 1: No FB LPF 2: Observer FB 4: 1st order FB LPF 10: 2nd LPF+SPD_CMD FT 11: SPD_CMD FT 12: SPD_CMD FT+Observer 14: 1st LPF+Observer	1	0-255	RWS
D2.07	60FB0110	Kpp	Kp of position loop.unit:0.01Hz	1000	0- 32767	RWS
D2.08	2FF01A10	K_Velocity_FF‰	Feedforward of position loop, unit: 0.1%	0	0-1500	RWS
D2.09	2FF01B10	K_Acc_FF‰	Acceleration forward of position loop, unit: 0.1%	0	0-1500	RWS
D2.10	2FF00610	Simplified acceleration	Trapezoidal acceleration. Unit rps/s	100	/	RWS
D2.11	2FF00710	Simplified deceleration	Trapezoidal deceleration. Unit rps/s	100	/	RWS
D2.12	60F60110	Кср	Kp of current loop	/	1- 32767	RWS
D2.13	60F60210	Kci	Ki of current loop	/	0-1000	RWS
D2.14	2FF01C10	CMD_q_Max_Arms	Maximum current command in q axis unit: 0.1Arms	/	0- 32767	RWS

Kinco FD5 AC series servo driver user manual

D2.15	60F60310	Speed_Limit_Factor	A factor for limiting max velocity in the torque mode	10	0-1000	RWS
D2.16	607E0008	Invert_Dir	Invert motion 0: CCW is positive direction 1: CW is positive direction	0	0-1	RWS
D2.24	60800010	Max_Speed_RPM	Motor's max speed unit: rpm	5000	0- 15000	RWS
D2.25	2FF00E10	Max_Following_Error_16	Max_Following_Error= 100*Max Following Error 16	100	1- 32767	RWS
D2.26	60FB0510	Pos_Filter_N	Average filter parameter	1	1-255	RWS
D2.27	20101810	Zero_Speed_Window	Zero speed window, inc/ms	3	0- 65535	RWS

The F003 Group panel menu includes the parameters needed to configure the multi-speed multi-bit control and the digital
input/output function.

Table 9-6 F003 parameters

Panel address	Internal address	Name	Description	Defaults	Range	R/W/S
D3.00	2FF00108	Store_Data	Save or init parameters 1: save control parameters 10: init control parameters	0	0-255	RW
D3.01	20100310	Din1_Function		0x01	0-65535	RWS
D3.02	20100410	Din2_Function		0x02	0-65535	RWS
D3.03	20100510	Din3_Function		0x04	0-65535	RWS
D3.04	20100610	Din4_Function	See chapter 6.1, table 6-1	0x08	0-65535	RWS
D3.05	20100710	Din5_Function		0x10	0-65535	RWS
D3.06	20100810	Din6_Function		0x20	0-65535	RWS
D3.07	20100910	Din7_Function	-	0x40	0-65535	RWS
D3.08	2FF00D10	Dio_Polarity	Sets IO polarity	65535	0-65535	RWS
D3.09	2FF00810	Dio_Simulate	Simulates input signals, and enforce output signals for outputting	0	0-65535	RWS
D3.10	2000008	Switch_On_Auto	0: no operation 1: auto-enable when logic power-up. Can be set only if the DIN function enable is not defined.	0	0-255	RWS
D3.11	20100F10	Dout1_Function		0x01	0-65535	RWS
D3.12	20101010	Dout2_Function		0x02	0-65535	RWS
D3.13	20101110	Dout3_Function	See chapter 6.1, table 6-2	0xA4	0-65535	RWS
D3.14	20101210	Dout4_Function		0x08	0-65535	RWS
D3.15	20101310	Dout5_Function		0x10	0-65535	RWS
D3.16	20200D08	Din_Mode0	Operation mode channel 0: select via input port	-4	-128-127	RWS
D3.17	20200E08	Din_Mode1	Operation mode channel 1: select via input port	-3	-128-127	RWS
D3.18	20200910	Din_Speed0_RPM		0	-32768- 32767	RWS
D3.19	20200A10	Din_Speed1_RPM	See chapter 6.2.1, table 6-8	0	-32768- 32767	RWS
D3.20	20200B10	Din_Speed2_RPM	unit: rpm	0	-32768- 32767	RWS
D3.21	20200C10	Din_Speed3_RPM		0	-32768- 32767	RWS

Kinco FD5 AC series servo driver user manual

D3.34	25080110	Gear_Factor0	Gear_Factor0 Numerator of electronic gear		-32768- 32767	RWS
D3.35	25080210	Gear_Divider0	Denominator of electronic Gear	1000	1-32767	RWS
D3.36	25080308	PD_CW	Pulse control mode 0: CW / CCW mode 1: pulse direction mode 2: incremental encoder mode	1	0-255	RWS
D3.37	25080610	PD_Filter	Filter parameter of pulse input	3	0-255	RWS
D3.38	25080810	Frequency_Check	Maximum frequency of input pulse unit: pulse/ms	600	0-3000	RWS
D3.39	25080910	Target_Reach_Time_ Window	Target (position velocity) reached time window. unit: ms	10	0-32767	RWS
D3.40	2FF10108	Target_Reach_Time_ Window	Target (position velocity) reached time window. unit: ms	0	0-8	RWS
D3.41	2FF10210	Multi- stage_pos_control_L	ol_L Select the internal position segment, When the data is $0 \sim 7$, it means to select and set the DIN position $0 \sim 7$ in turn. When the data is 8, it means homing offsets in sequence.		-32768- 32767	RWS
D3.42	2FF10310	Pos_M	D3.40 Selected position L	0	-32768- 32767	RWS
D3.43	20200F10	Pos N	Number of pulses=M*10000+N	0x2F	0-65535	RWS
D3.44	20201820	 Din_Speed4_RPM	Multi-stage speed control 4[rpm]	0	-32768- 32767	RWS
D3.45	20201920	Din_Speed5_RPM	Multi-stage speed control 5[rpm]	0	-32768- 32767	RWS
D3.46	20201A20	Din_Speed6_RPM	Multi-stage speed control 6[rpm]	0	-32768- 32767	RWS
D3.47	20201B20	Din_Speed7_RPM	Multi-stage speed control 7[rpm]	0	-32768- 32767	RWS

The Group F004 panel menu includes the parameters related to the motor.

Table 9-7 F004 parameters

Panel address	Internal address	Name	Description	Defaults	Range	R/W/S
D4.00	2FF00308	Store_Motor_Data	1: Store the set motor parameters	0	0-255	RW
D4.01	64100110	Motor_Num	Configuration motor model	0	/	RWS
D4.02	64100208	Feedback_Type	Encoder Type bit0: UVW signal check bit1: Nikon multi-turn absolute value bit2: Nikon single-turn absolute value bit4: ABZ signal check bit5: snip encoder	/	0-255	RWS
D4.03	64100508	Motor_Poles	Motor pole pairs[2p]	/	0-255	RWS
D4.04	64100608	Commu_Mode	Commutation mode	/	0-255	RWS
D4.05	64100710	Commu_Curr	Current for commutation	/	-2048- 2047	RWS
D4.06	64100810	Commu_Delay	Time for commutation	/	0-32767	RWS
D4.07	64100910	Motor_IIt_I	Current setting of motor overtemperature protection	/	1-1500	RWS
D4.08	64100A10	Motor_IIt_Filter	Time setting of motor overtemperature protection	100	2-32767	RWS
D4.09	64100B10	Imax_Motor	Maximum peak current of the motor	/	0-32767	RWS

Kinco FD5 AC series servo driver user manual

D4.10	64100C10	L_Motor	Motor phase inductance	/	1-32767	RWS
D4.11	64100D08	R_Motor	Motor phase resistance	/	0-32767	RWS
D4.12	64100E10	Ke_Motor	Reverse electromotive force of the motor	/	0-32767	RWS
D4.13	64100F10	Kt_Motor	Motor torque coefficient	/	1-32767	RWS
D4.14	64101010	Jr Motor	Motor rotor inertia	/	2-32767	RWS
D4.16	64101210	Brake_Delay	Delay time for motor brake Default value: 150ms	150	0-32767	RWS
D4.17	64101308	Invert_Dir_Motor	Motor running dirction	0	0-1	RWS
D4.18	64101610	Motor_Using	Current using motor type	/	0-65535	R
D4.21	64101710	Addition_Device	Bit0=0: Motor without brake Bit0=1: Motor with brake if motor with brake,before the brake close totally,drive will keep working for some time(controlled by 6410.12).	0	0-65535	RWS
D4.22	64101810	Temp_Motor_Ref	Motor temperature reference	/		RWS
D4.24	64101C10	Index_Width	Index signal width	8		RWS
D4.25	64101D08	Encoder_Power_Delay	Power delay on encoder	5		RWS

The F005 Group panel menu contains common controller parameter Settings. Table 9-8 F005 parameters

Panel address	Internal address	Name	Description	Defaults	Range	R/W/S
D5.00	2FF00108	Store_Data	Save or init parameters 1: save control parameters 10: init control parameters	0	0-255	RW
D5.01	100B0008	Node_ID	Controller ID	1	0-255	RWS
D5.02	2FE00010	RS232_Baudrate	Serial port baudrate540: 19200 270: 38400 90: 115200 Effective after reboot	270	0-65535	RWS
D5.03	2FE10010	U2BRG	Serial port baudrate540: 19200 270: 38400 90: 115200 Effective immediately, can't be saved	270	0-65535	RWS
D5.04	60F70110	Chop_Resistor	Resistance value of brake resistor unit: ohm	0	0-32767	RWS
D5.05	60F70210	Chop_Power_Rated	Nominal power of brake resistor unit: W	0	0-32767	RWS
D5.06	60F70310	Chop_Filter	For chop power calculation.	60	1-32767	RWS
D5.15	65100B08	RS232_Loop_Enable	RS232 communication control 0: 1 to 1 1: 1 to N	0	0-255	RWS
D5.16	2FFD0010	User_Secret	User secret, 16 bit	0	0-65535	RW
D5.17	2F810008	CAN_Baudrate	CAN baudrate setting 100: 1M 50: 500k 25: 250k 12: 125k 5: 50k	50	0-65535	RWS
D5.18	2FE20010	RS485_Baudrate	RS485_Baudrate of RS485 1080 9600 540: 19200 270: 38400 90: 115200 need reboot	540	0-65535	RWS
D5.19	65100C08	RS485_Protocol	RS485 communication protocol select0: MODBUS1: Same protocol as RS232	0	0-255	RWS

Chapter 10 Communication

10.1 RS232 communication

10.1.1 RS232 hardware interface

The mini-usb port under the panel cover of the FD5 series servo drive is the 232 debugging port, which can be connected to the Kinco servo+ to directly control the work of the servo drive.

10.1.2 RS232 communication cable

The MINIUSB5p to DB9 configuration cable is the adapter cable between the drive and the computer. One end is connected to the RS232 (DB9 pin header interface) of the computer, and the other end is connected to the Mini-usb interface of the drive. If your computer does not have an RS232 DB9 interface, you need to use a USB-to-serial cable to connect.

Figure 10-1 miniusb-5p to DB9

10.1.3 RS232 transport protocol

FD5 series drives RS-232C communication strictly follows the master-slave protocol, Kinco servo+ can send any data to drive. The drive sets the address to calculate these data and respond with a return value. The default communication parameters of FD5P series servo are as follows:

Baud rate = 38400 bps

Data bit = 8

Stop bit = 1

No verificaiton

The communication ID can be set through the device station number d5.01, and the baud rate can be set through d5.02. After setting, the baud rate must be saved by setting d5.00. The changed baud rate and ID will be restarted in the drive. effective later.

 \rightarrow

When the host computer is connected through a baud rate of 115200, due to the high frequency of transmission signals, there are certain requirements for the communication environment. If there is a disconnection or frame loss, it is recommended to reduce the communication baud rate to connect to the host computer software.

The transport protocol used by RS232 uses a fixed ten-byte packet format:

Byte0	Byte1	Byte2	Byte3	Byte4	Byte 5	Byte6	Byte7	Byte8	Byte 9
Drive ID				D	ata				CHKS

CHKS = -SUM(byte0.....byte8),

Note

CHKS are the last two digits of the calculation result

Master send:

Byte0	Byte1	Byte2	Byte3	Byte4	Byte 5	Byte6	Byte7	Byte8	Byte 9
Drive ID		Master sends data							CHKS

Servo send/master receive:

Kinco FD5P AC series servo driver						Cha	apter 10 C	ommunicati	ion
Byte0	Byte1 Byte2 Byte3 Byte4 Byte 5 Byte6 Byte7 Byte8							Byte 9	
Drive ID		Master receive							

Drive ID	Master receive	

 \rightarrow

Note

- There is an independent CHKS for every ten bytes.
- If the master sends an address that does not exist in the network to the servo drive, the servo drive will not respond.
- When the master sends a correct data, the slave will look for the slave data of the corresponding address and check the check value. If the check value does not match, the slave will not respond

10.1.4 RS232 Data protocol

The data protocol is different from the transmission protocol, and its content refers to 8 data bytes out of the 10 bytes above. The internal data definition of FD5 series servo drives conforms to the CANopen international standard. Values and functions are expressed by indices and sub-indexes.

A: Downloading (From master to slave)

Download means that the master sends a command to write a value to the slave object. If downloaded to a non-existent object, the master will generate an error.

Data format from the master

Byte0	Byte1	Byte2	Byte3	Byte4	Byte 5	Byte6	Byte7	
Function code	In	idexes	Subindexes	Data				
Function da	• Function data Specifies the direction and size of the data transfer							
• 23(0x16)	• 23(0x16) Sending 4 bytes of data(bytes 47 include 32 bits)							
• 2B(0x16)								
• $2F(0x16)$	(0x16) sending 1bytes of data(bytes 4 include 8 bits)							
• Indexes	The address of the sending object, 16 bits							
• a 1 · 1								

- Subindexes Subaddress of the sending object, 8 bits
- Data Sending data The order of the four bits in the data is that the high bit is in the back and the low bit is in the front.
- For example:

Write 600rpm to the "target speed" of the slave station, the internal unit of 2FF0.09 is rpm, 600 is decimal, and hexadecimal is 258. Since the length of the object to be written is 4 bytes, but the calculation result is only two bytes, should be filled with 0 in the high order, so the final result = $00\ 00\ 258$

Slave response data format

Byte0	Byte1	Byte2	Byte3	Byte4	Byte 5	Byte6	Byte7
Function code	Indexes		Subindexes		Re	eserve	
 Function co 60(0x16) 80(0x16) 	Data s	e: Display slave response Data sending successed Error from Byte 47					
• Indexes	The address of the sending object, 16bits, same as master' s						
• Subindexes	Subad	Subaddress of the sending object, 8bits, same as master' s					
• Reserve	Reve	rse					
B: upload(from slave to master)							

Upload means that the master sends a command to read the slave object address. Uploading a non-existent address will cause an error to the master.

Master send data

Byte0	Byte1	Byte2	Byte3	Byte4	Byte 5	Byte6	Byte7
Function code	Indexes		Subindexes	Reserve			
 Function code 40(0x16) Define the directing Read data 			data transfer				

Kinco FD5P AC series servo driver

- The address of the sending object, 18 bits Indexes
- Subindexes Subaddress of the sending object, 8 bits
- Bit 4...7 are not used Reverse

Slave receive data

Byte0	Byte1	Byte2	Byte3	Byte4	Byte 5	Byte6	Byte7
Function code	Inde	xes	Subindexes	Data			
• Function code	e Display S	Slave response	2				
43(0x16)	Byte 47	Byte 47 include 32 bits data					
4B(0x16)	Byte 45	Byte 45 include 16 bits data					
4F(0x16)	Byte 4 inc	elude 8 bits da	ita				
80(0x16)	Error from	Error frombyte 47					
• Indexes	The address of the sending object, 16bits, same as master' s.						
• Subindexes	Subaddre	Subaddress of the sending object, 8bits, same as master' s					
• Data	Data from	Data from slave					

If there is no error in the data, byte 4...7 hold the value of the slave object, with the low order first and the high order last. If there is an error in the data, the data of these four bits is not equal to the value of the slave object

• For example:

The master sends an "upload" command to the slave:

01 40 F0 2F 09 58 02 00 00 3D (This command is to read the target speed of the slave 2FF00910)

Slave response:

01 4B F0 2F 09 58 02 00 00 32

ъ.

Direction:	
01	Slave number is 1
4B	Received 2 bytes, saved by byte4 and byte5 in the 10 bytes of the response
F0 2F	The object index address is 2FF0
09	The object subindex address is 09
58 02 00 00	Data is 00 00 02 58(hex)= 600 rpm

Table 10-1 Set homing mode/position mode/speed mode via RS232 communication

	Homing mode					
Address	Name	Value	Message(ID=1)	Remark		
60400010	Control word	F	Send→01 2B 40 60 00 0F 00 00 00 25			
60600008	Operation mode	6	Receive←01 60 40 60 00 0F 00 00 00 F0			
60980008	Homing mode	33	Send→01 2F 60 60 00 06 00 00 00 0A Receive←01 60 60 60 00 06 00 00 00 D9			
60990120	Origin turning signal speed	200RPM	Send→01 2F 98 60 00 21 00 00 00 B7 Receive←01 60 98 60 00 21 00 00 00 86	Origin turning signal speed and origin The signal speed is expressed in		
60990220	Origin signal speed	100RPM	Send→01 23 99 60 01 03 9D 36 00 0C Receive←01 60 99 60 01 03 9D 36 00 CF	decimal DEC by default, DEC=[(RPM*512*[641003])/1875]		
60400010	Control word	1F	Send→01 2B 40 60 00 1F 00 00 00 15 Receive←01 60 40 60 00 1F 00 00 00 E0			
	41 60 00 00 00 00 00 00 + , bit15=1 indicates					

			Position mode		
Address	Name	Value	Message(ID=1)	Remark	
60400010	Control word	2F 4F	Send \rightarrow 01 2B 40 60 00 2F 00 00 00 05 Receive \leftarrow 01 60 40 60 00 2F 00 00 00 D0 Send \rightarrow 01 2B 40 60 00 4F 00 00 00 E5		
60600008	Operation mode	1	Receive←01 60 40 60 00 4F 00 00 00 B0 Send→01 2F 60 60 00 01 00 00 00 0F Receive←01 60 60 60 00 01 00 00 00 DE	The trapezoidal speed is expressed in decimal DEC by default	
607A0020	Target position	50000inc	Send→01 23 7A 60 00 50 C3 00 00 EF Receive←01 60 7A 60 00 50 C3 00 00 B2	DEC=[(RPM*512*[641003])/1875]	
60810020	trapezoidal speed	200RPM	Send→01 23 81 60 00 03 9D 36 00 25 Receive←01 60 81 60 00 03 9D 36 00 E8		
60830020	trapezoidal acceleration	100rps/s	Send→01 23 83 60 00 6E A3 01 00 E7 Receive←01 60 83 60 00 6E A3 01 00 AA	- Trapezoidal acceleration and	
60840020	trapezoidal acceleration	100rps/s	Send→01 23 84 60 00 6E A3 01 00 E6 Receive←01 60 84 60 00 6E A3 01 00 A9	trapezoidal acceleration are expressed in decimal DEC by default.,	
60400010	Control word	3F	Send→01 2B 40 60 00 3F 00 00 00 F5 Receive←01 60 40 60 00 3F 00 00 00 C0	DEC=[(RPS/S*65536*[641003])/ 4000000]	
00400010	Control word	5F	Send→01 2B 40 60 00 5F 00 00 00 D5 Receive←01 60 40 60 00 5F 00 00 00 A0	$2F \rightarrow 3F$: absolute positioning $4F \rightarrow 5F$: relative positioning	
			tatus word , $$ Drive return 01 4B 41 60 00 37 $$		
C4 FF FF 1A	A,bit10 for target po	sition reach			
			Velocity mode		
Address	Name	Value	Message(ID=1)	Remark	
60600008	Operation mode	3	Send→01 2F 60 60 00 03 00 00 00 0D Receive←01 60 60 60 00 03 00 00 00 DC	The target speed is expressed in	
60FF0020	Target speed	-100RPM	Send→01 23 FF 60 00 7E B1 E4 FF 6B Receive←01 60 FF 60 00 7E B1 E4 FF 2E	decimal DEC by default DEC=[(RPM*512*[641003])/1875]	
60400010	Control word	2F	Send→01 2B 40 60 00 2F 00 00 00 05 Receive←01 60 40 60 00 2F 00 00 00 D0	Trapezoidal acceleration and trapezoidal acceleration are	
60830020	Trapezoidal acceleration	100rps/s	Send→01 23 83 60 00 6E A3 01 00 E7 Receive←01 60 83 60 00 6E A3 01 00 AA	expressed in decimal DEC by default:	
60840020	Trapezoidal deceleration	100rps/s	Send→01 23 84 60 00 6E A3 01 00 E6 Receive←01 60 84 60 00 6E A3 01 00 A9	DEC=[(RPS/S*65536*[641003])/ 4000000]	

deceleration1001ps/sReceive←01 60 84 60 00 6E A3 01 00 A940000001Note: The message is expressed in hexadecimal, and the motor resolution used in this case is 65536

10.2 RS485 Communication

10.2.1 RS485 hardware wiring

The RS485 port of FD5 series servo driver supports MODBUS communication function, which can be used to modify the internal parameters of the servo and monitor the servo state. The communication line of the master station is connected to the X4A(IN) and the X14B(OUT) is connected to the next slave station device. Figure 10-2 show the cable connections.

Table 10-2 RS485 Communication port description

12345676	Pin	Signal mark	Signal name
12345678	4	TX-	Negative of data sending
RJ-45	5	TX+	Positive of data sending

485 communication module	FD5P		
RS485+/A	5	TX+	
RS485-/B	4	TX-	
GND	8	GND	

Figure	10_{-2}	RS /85	cional	wiring
riguie	10-2	N3403	Signai	wning

10.2.2 RS485 communication parameters

Table 10-3 RS485 communication parameters setting

LED display	Internal address	Name	Meaning	Default
d5.01	100B0010	ID_Com Station No.	Drive station ID. To change this parameter, save it with d5.00 and restart it.	1
d5.18	2FE20010	RS485 baud rate	Used to set the baud rate of RS485 value baud rate 1080—9600 540—19200 270—38400 90—115200 Note: need to save and restart.	540
d5.19	65100C08	RS485 protocol selection	 0: use Modbus communication protocol 1: use RS232 communication protocol Note: need to save and restart. 	0
	65100E10	RS485 Mod	0008: data bit=8, stop bit=1, No parity check 0009: data bit=8, stop bit=2, No parity check	0008

10.2.3 MODBUS RTU communication protocol

FD5 servo driver supports MODBUS RTU communication protocol, and its internal object is a discontinuous 16-bit data register (mapped to 4X when it is read and written by the upper computer).

Table 10-4 Modbus RTU communication protocol basic format

Target station	Function code	data	CRC check code
1 Byte	1 Byte	N Byte	2 Byte

Note: The starting message interval should be no less than 3.5 characters.

Kinco FD5 AC series servo driver user manual

Common Modbus function codes are described as follows:

• Function code 0x03: read data register

Request format:

Target station Function code	Function code	Start address	Start address	Read number	Read number	CRC
	i unetion code	High Byte	Low Byte	High Byte	Low Byte	ene
1 Byte	03	1 Byte	1 Byte	1 Byte	1 Byte	2 Byte

Correct response:

Target station	Function code	Return data Byte number	Register 1 High Byte	Register 1 Low Byte	 CRC
1 Byte	03	1 Byte	1 Byte	1 Byte	 2 Byte

If a response error such as the address does not exist, the returned function code is 0x81

Example: Sending message 01 03 32 00 00 02 CA B3

Message meaning: 01-ID No.;

03——Function code, read data register;

32 00—The modbus address of the servo read-only object "status word" 60410010;

00 02——Read the number of word data;

CA B3——Check code

• Function code 0x06: write single data register

Request format

Target station	Function code	Register address High Byte	Register address Low Byte	Forcing value High Byte	Forcing value Low Byte	CRC
1 Byte	06	1 Byte	1 Byte	1 Byte	1 Byte	2 Byte

Response format: If the setting is successful, the original text will be returned.

If the written data is out of range, the address does not exist, and the response to read-only data operations is wrong, the returned function code is 0x86.

Example: Sending message 01 06 31 00 00 0F C7 32

Message meaning: 01——ID No.

06——Function code to write a single WORD;

3100—The modbus address of the servo writable object "control word" 60400010, the data length is a single WORD;

00 0F-Write data Hexadecimal 000F

- C7 32——Check code
- Function code 0x10: write multi-holding register

Request format:

Target station	Function code	Start address High Byte	Start address Low Byte	Quanti ty high byte	Quantity low byte	Force value byte number	Force value 1 High byte	Force value 1 Low byte	CRC	Target station
1 Byte	10	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	2 Byte	1 Byte

Correct response format:

Target station	Function code	Start address High Byte	Start address Low Byte	Quantity high byte	Quantity low byte	CRC
1 Byte	10	1 Byte	1 Byte	1 Byte	1 Byte	2 Byte

If the written data is out of range, the address does not exist, and the response to read-only data operations is wrong, the returned function code is $0x90_{\circ}$

Example: Sending message: 01 10 6F 00 00 02 04 4E 82 00 1B ED 56

Message meaning: 01——ID No.

10——Function code to write multiple WORD;

6F 00-The modbus address of the servo writable object "control word" 60400010, the data length is two WORD

00 02-write 2 WORD;

04—Data length is 4 Byte (2 WORD);

4E 82 00 1B——write data hexadecimal 001B4E82, decimal 1789570, convert to 100RPM;

ED 56——Check code;

10.2.4 Communication troubleshooting measures

When the communication connection between the driver and the Kinco Servo+ cannot be performed, please refer to Chapter 10.2 to check the communication parameters and wiring of the driver. When the communication of the drive is easy to drop, read only but not write or only write but not read, etc., you can troubleshoot through the following aspects:

- 1. Terminating resistor. When the 485 communication rate is high and the communication distance is long, the signal will be reflected at the end of the transmission line. Therefore, it is necessary to connect a 120Ω terminal resistor in parallel at the beginning and end of the communication network. Since the FD servo drive has its own terminal resistance, it is only necessary to dial the dial code of the first and last drives to the ON position.
- 2. Cable size. The recommended wire diameter of the 485 signal cable is 24AWG, and shielded twisted pair cables should be used. The shielding layers of the cables should be grounded together and the grounding resistance should not be greater than 1Ω . The use of twisted pairs can effectively eliminate antagonistic interference, and cables with good shielding can effectively reduce the impact of external interference sources.
- 3. Reasonable wiring. The communication cables should be routed in separate troughs from the power cables, and the distance should be \geq 20cm. If the cables can be tucked into a metal tube, the anti-interference ability will be better. During the wiring process, the signal line and the power supply line intersect vertically, and parallel laying should be avoided as much as possible.
- 4. Good grounding. The motor power cable must use a cable with a shielded net, the motor PE is connected to the ground terminal of the driver, and the driver shell must be well grounded. For the grounding diagram, please refer to Figure 3.6 in Chapter 3.
- 5. Power disturbance. The unstable power supply of the grid will also directly affect the normal use of the servo. For the external circuit of the driver, please refer to Chapter 3.2 for connection.

10.3 CANopen Bus communication

CANopen is the most famous and successful of the open fieldbus standards, which has been widely recognized and widely used in Europe and the United States. In 1992, the Association of Automation CAN Users and Manufacturers (CiA) was established in Germany and began to develop CANopen, an application layer protocol for automation CAN. Since then, the members of the Association have developed a series of CANopen products, which are widely used in machinery manufacturing, pharmaceuticals, food processing and other fields.

The FD5 series servo is A standard CAN slave device, which strictly follows the CANOpen 2.0A/B protocol, and any host computer that supports the protocol can communicate with it. The servo uses a strictly defined list of objects, we call it the object dictionary, this object dictionary is designed based on the CANopen international standard, all objects have a clear function definition. The Objects mentioned here are similar to the memory address we often say, some objects such as speed and position can be modified by the external controller, and some objects can only be modified by the drive itself, such as status and error messages. Table 10-5 lists these objects.

Table 10-5 Object dictionary example list

Index	Sub	Bits	Character	Meaning
6040	00	16(=0x10)	RW	Device status control word
6060	00	8(=0x08)	RW	Operating mode
607A	00	32(=0x20)	W	Target location
6041	00	16(=0x10)	MW	Device status word

The properties of an object are as follows:

- 1. RW(Read and write) : Objects can be read or written;
- 2. RO(read-only) : The object can only be read;
- 3. WO(Write only) : Write only;
- 4. M(Mappable) : Objects can be mapped, similar to indirect addressing;
- 5. S(Storable) : Objects can be stored in the Flash-ROM area and are not lost when powered off.

10.3.1 CANopen bus communication hardware description

Table 10-6 Pin name and function

12345670	Pin No.	Signal mark	Signal description
12345678	1	CAN_H	CAN_H bus (high dominant)
RJ-45 接头	2	CAN_L	CAN_L bus cable(low dominant)
	3	CAN_GNDB	Signal ground

The CAN communication protocol mainly describes the information transfer method between devices. The definition of the CAN layer is consistent with the open system interconnection model (OSI). Each layer communicates with the same layer on another device, the actual communication takes place on two adjacent layers on each device and the devices are interconnected only through the physical medium of the model physical layer. The specification of CAN defines the bottom two layers of the model, the data link layer and the physical layer. The physical layer of the CAN bus is not strictly regulated, and can use a variety of physical media such as twisted pair optical fibers, etc. The most commonly used is twisted pair signals, using differential voltage transmission (commonly used bus transceivers). The two signal lines are called CAN_H and CAN_L, and they are both about 2.5V in static state. At this time, the state is expressed as logic 1, which can also be called recessive bit. CAN_H is higher than CAN_L to represent logic 0, which is called display bit. At this time, the usual voltage value is CAN_H=3.5V and CAN_L=1.5V, Epiphany first in conflict. The names and functions of the CAN communication interface pins are shown in Table 10-6.

Figure 10-3 CAN Signal Identification

Note:

1、 All CAN_L and CAN_H pins of the slave station can be directly connected and connected in series.

2. The master station and the last slave station need to be connected to 120 ohms of terminal resistance, FD5 drive with terminal resistance dip SW1, set to ON to turn on terminal resistance. Restart the drive after changing the terminal resistance dip status.

3. Use shielded twisted pair cables for communication, and ground them properly. (The 3-pin ground cable can be disconnected for short-distance communication, but it is recommended to ground the 3-pin for long-distance, high-baud communication.)

4、 Table 10-7 lists the theoretical maximum communication distances of various baud rates.

5. The FD5 series servo drive does not require an external 24V power supply to power the CAN.

Table10-7 The longest distance table that can theoretically communicate with each baud rate

Communication speed (bit/s)	Communication distance (M)
1M	25
800K	50
500K	100
250K	250
125K	500
50K	600
25K	800
10K	1000

10.3.2 CANopen bus communication software description

EDS files

The EDS (electronic data sheet) file is the identification file or similar code of the slave station connected to the PLC. Through this file, the type of the slave station is identified (what kind of 401, 402, 403 is similar, or which one of 402 belongs to) equipment). This file contains all the information of the slave station, such as manufacturer, serial number, software version, supported baud rate type, OD that can be mapped and the attributes of each OD and other parameters, similar to the GSD file of Profibus. Therefore, before the hardware configuration, we first need to import the EDS file of the slave station into the host configuration software.

<u>SDO</u>

SDO (Service data object) is mainly used to transmit low-priority objects between devices, and is typically used to configure and manage slave devices. For example, it is used to modify PID parameters of current loop, speed loop and position loop, PDO configuration parameters, etc. This data transmission method is the same as that of MODBUS, that is, after the master station sends out, the slave station needs to return data response. This communication method is only suitable for parameter setting, not suitable for data transmission with high real-time requirements.

The communication mode of SDO is divided into upload and download. The host computer can read and write the OD inside the servo according to the dedicated SDO read and write instructions. In the CANopen protocol, the content of the object dictionary can be modified through SDO (Service Data Object). The structure of the SDO command and the guidelines to follow are described below.

The basic structure of SDO is as follows:

 $Client \rightarrow Server / Server \rightarrow Client$

Byte0	Byte1-2	Byte3	Byte4-7
SDO Command specifier	Object index	Object subindex	Maximum 4 Bit data

The SDO command word contains the following information:

- Download/upload
- Request/response
- Segmented/expedited transfer
- CAN frame data bit length, used for alternately clearing and setting toggle bits for each subsequent segment.

5 request/response protocols are implemented in SDO:

- Initiate Domain Download;
- Download Domain Segment;
- Initiate Domain Upload;
- Upload Domain Segment;
- Abort Domain Transfe

Among them, Download refers to the write operation of the object dictionary, and Upload refers to the read operation of the object dictionary; when reading parameters, use the Initiate Domain Upload protocol; when setting parameters, use the Initiate Domain Download protocol; the SDO command word of the protocol (SDO CAN The first Bit) syntax of the message is described in Table 10-8 and Table 10-9, where "-" means irrelevant and should be 0).

Table 10-8 Initiate Domain Download

Bit	7	6	5	4	3	2	1	0
Client→	0	0	1	-	n		e	s
←Server	0	0	1	-	-	-	-	-

Table 10-9 Initiate Domain Upload

Bit	7	6	5	4	3	2	1	0
Client→	0	0	1	-	-	-	-	-
←Server	0	0	1	-	n		e	S

Description:

n—Indicates the number of bits of meaningless data in the message data [from (8-n) Bit to the 7th Bit data is meaningless] (n is valid when e=1 and s=1, otherwise n is 0)

e——Normal transmission when e=0, accelerated transmission when e=1;

s—Indicates whether the data length is specified, 0 means the data length is not specified, 1 means the data length is specified e=0, s=0—Keep by CiA;

e=0, s=1—Data Bit is the Bit counter, byte4 is LSB, byte7 is MSB

e=1—Data Bit is the data to be downloaded.

Table 10-10 and 10-11 show the format of sending and receiving SDO message when reading parameters.

Table 10-10 Send SDO message when reading parameters

Identifier		Daten								
Identifier	DLC	0	1	2	3	4	5	6	7	
0x600+Node_ID	8	Send command word	Object index		Object index Object subindex			0	00	

Table 10-11Receive SDO message when reading parameters

Identifier									
Identifier	DLC	0 1 2 3 4 5 6					7		
0x580+Node_ID	8	receive command word	Object index		Object subindex	Ma	ximum	4 byte	data

Note : When the SDO message is sent, the command word is 0x40;

If the received data is 1 byte, the received command word is 0x4F;

if the received data is 2 byte, the received command word is 0x4B;

if the received data is 4 byte, the received command word is 0x43;

if there is an error in the received data , the received command word is 0x80.

Table 10-12 and 10-13 show the format of sending and receiving SDO message when modifying parameters.

Table 10-12 Send SDO message when edit parameters

Idoutifion					Daten				
Identifier	DLC	0 1 2 3 4 5				5	6	7	
0x600+Node_ID	8	Send command word	Object index Object subindex		Ma	aximum	4 byte d	lata	

Table 10-13 Receive SDO message when edit parameters

Identifier	DLC	DIC							
Identifier	DLC	0	1	2	3	4	5	6	7
0x580+Node_ID	8	Receive command word	Object index		Object subindex	Ma	aximun	n 4 Bit o	lata

Note : If the SDO message is sent successfully, the received command word is 0x60; if the SDO message fails to be sent, the received command word is 0x80.

If the data to be sent is 1 byte, the command word to send is 0x2F;

If the data to be sent is 2byte, the command word to send is 0x2B;

If the data to be sent is 4 byte, the sending command word is 0x23.

When the SDO message fails to be sent, you can troubleshoot the problem according to the error code returned.

Table 10-14 SDO message error code

Error code	Description			
0x05040001	Invalid command, unknown or illegal Client/Server command word			
0x06010001	Attempt to read write-only object parameter			
0x06010002	Attempt to write read-only object parameter			
0x06020000	Invalid index, the object does not exist in the object dictionary			
0x06040041	Unable to map, object parameter does not support mapping to PDO			
0x06060000	The drive is in an error failure state and the object parameter access fails			
0x06070010	Data type mismatch, service parameter length mismatch			
0x06070012	Data type mismatch, service parameter length is too large			
0x06070013	Data type mismatch, service parameter length is too short			
0x06090011	invalid subindex			

Kinco FD5 AC series servo driver user manual

Chatper 10 Communication

0x06090030	Invalid data, beyond the object parameter setting range			
0x06090031	The write data value is too large			
0x06090032	Write data value is too small			
0x08000022	Data cannot be transferred or saved to the app due to the current device state			

Table 10-15 Set the origin mode by SDO message

Parameters address	Name	Value	Message(ID=1)
60400010	Control word	F	Send→601 2B 40 60 00 0F 00 00 00
00400010	400010 Control word	Ľ	Receive←581 60 40 60 00 0F 00 00 00
60600008	Operation mode	6	Send→601 2F 60 60 00 06 00 00 00
0000008	Operation mode	0	Receive←581 60 60 60 00 06 00 00 00
(0080008		22	Send→601 2F 98 60 00 21 00 00 00
60980008	Origin mode	33	Receive←581 60 98 60 00 21 00 00 00
(0000120	Origin turning signal	200000	Send→601 23 99 60 01 03 9D 36 00
60990120	speed	200RPM	Receive←581 60 99 60 01 03 9D 36 00
(0000000		100000	Send→601 23 99 60 02 82 4E 1B 00
60990220	Origin signal speed	100RPM	Receive←581 60 99 60 02 82 4E 1B 00
(0.4000.1.0		15	Send→601 2B 40 60 00 1F 00 00 00
60400010	Control word	1F	Receive←581 60 40 60 00 1F 00 00 00

Send 601 40 41 60 00 00 00 00 00 read status word , Drive response 581 4B 41 60 00 31 C0 FF FF , bit15=1 indicate origin found

Table 10-16 Setting location mode through SDO messages

Parameters address	Name	Value	Message(ID=1)
		2F	Send→601 2B 40 60 00 2F 00 00 00
60400010			Receive←581 60 40 60 00 2F 00 00 00
00100010	Control word	4F	Send→601 2B 40 60 00 4F 00 00 00
		11	Receive←581 60 40 60 00 4F 00 00 00
60600008		1	Send→601 2F 60 60 00 01 00 00 00
0000008	00008 Operation mode	1	Receive←581 60 60 60 00 01 00 00 00
607A0020		50000inc	Send→601 23 7A 60 00 50 C3 00 00
007A0020	0020 Target position	50000mc	Receive←581 60 7A 60 00 50 C3 00 00
60010020		2000.001	Send→601 23 81 60 00 03 9D 36 00
60810020) trapezoidal speed	200RPM	Receive←581 60 81 60 00 03 9D 36 00
60820020		100mm a/a	Send→601 23 83 60 00 6E A3 01 00
60830020	trapezoidal acceleration	100rps/s	Receive←581 60 83 60 00 6E A3 01 00
60940020		100	Send→601 23 84 60 00 6E A3 01 00
60840020	trapezoidal acceleration	100rps/s	Receive←581 60 84 60 00 6E A3 01 00
		25	Send→601 2B 40 60 00 3F 00 00 00
(0400010		3F	Receive←581 60 40 60 00 3F 00 00 00
60400010	Control word	6 E	Send→601 2B 40 60 00 5F 00 00 00
		5F	Receive←581 60 40 60 00 5F 00 00 00

Send 601 40 41 60 00 00 00 00 00 read status word, Drive response 581 4B 41 60 00 37 C4 FF FF,bit10 indicates target position reached

Parameter address	Name	value	message(ID=1)
60600008	Operation mode	3	Send→601 2F 60 60 00 03 00 00 00 Receive←581 60 60 60 00 03 00 00 00
60FF0020	Target speed	-100RPM	Send→601 23 FF 60 00 7E B1 E4 FF Receive←581 60 FF 60 00 7E B1 E4 FF
60400010	Control word	2F	Send→601 2B 40 60 00 2F 00 00 00 Receive←581 60 40 60 00 2F 00 00 00
60830020	Trapezoidal acceleration	100rps/s	Send→601 23 83 60 00 6E A3 01 00 Receive←581 60 83 60 00 6E A3 01 00
60840020	Trapezoidal deceleration	100rps/s	Send→601 23 84 60 00 6E A3 01 00 Receive←581 60 84 60 00 6E A3 01 00

Table 10-17 Setting Velocity mode through SDO message

Note: The message is expressed in hexadecimal, and the resolution of the motor used in this case is 65536

PDO description

PDO can transmit 8 bytes of data at a time, with no other protocol presetting (meaning that the data content is predefined), and is mainly used to transmit data requiring high frequency exchange. The transmission mode of PDO breaks the existing data question-and-answer transmission concept and adopts a new data exchange mode. The two sides of the device define the data receiving and sending area in each device before transmission, and directly send the relevant data to the data receiving area of the other side during data exchange, which reduces the question-and-answer inquiry time and greatly improves the efficiency of bus communication. As a result, high bus utilization is achieved.

PDO's COB-ID description

COB-ID is a unique method of CANopen communication protocol, its full name is Communication Object Identifiercommunication object-ID, These COB-IDs define the corresponding transmission levels for the PDO. With these transmission levels, the controller and the servo can define the same transmission level and the transmission content in their respective software configurations. In this way, after both the controller and the servo use the same transmission level and transmission content, the data transmission is transparent, that is, both parties know the content of the data to be transmitted, and there is no need for the other party to reply data when transmitting data.

The default ID allocation table is based on the 11-bit CAN-ID defined by CANopen 2.0A

(CANopen 2.0B protocol COB-ID is 27 bits), including a 4-bit function code part and a 7-bit node ID (Node-ID) section, as shown in Figure 10-4.

Figure 10-4 Default ID explanation diagram

Node-ID — Defined by the system integrator, for example, set by the DIP switch on the device (that is, the station number of the servo), the Node-ID range is $1\sim127$ (0 is not allowed to be used);

Function Code ——The function code of data transmission defines the transmission level of various PDOs, SDOs, and management messages. The smaller the function code, the higher the priority.

Bro	Broadcast object for CANopen predefined master/slave connection set						
Object	Function code (ID-bits 9-7)	COB-ID	Index of communication parameters in OD				
NMT Module Control	0000	000H	-				
SYNC	0001	080H	1005H, 1006H, 1007H				
TIME SSTAMP	0010	100H	1012H, 1013H				
Peer object for CANopen master/slave connection set							
Object	Function code (ID-bits 9-7)	COB-ID	Index of communication parameters in OD				

Kinco FD5 AC series servo driver user manual

Chatper 10 Communication

KINCO FDJ AC SEI IES SEI VO UI			
Emergency	0001	081H-0FFH	1024H, 1015H
PDO1 (Send)	0011	181H-1FFH	1800H
PDO1 (Receive)	0100	201H-27FH	1400H
PDO2 (Send)	0101	281H-2FFH	1801H
PDO2 (Receive)	0110	301H-37FH	1401H
PDO3 (Send)	0111	381H-3FFH	1802H
PDO3 (Receive)	1000	401H-47FH	1402H
PDO4 (Send)	1001	481H-4FFH	1803H
PDO4 (Receive)	1010	501H-57FH	1403H
SDO (Send/Server)	1011	581H-5FFH	1200Н
SDO (Receive/Client)	1100	601H-67FH	1200Н
NMT Error Control	1110	701H-77FH	1016H-1017H

Note:

1. The smaller the COB-ID, the higher the priority;

2. The function code in front of each level of COB-ID is in a fixed format;

3.COB-IDs are 00H, 80H, 100H, 701H-77FH, and 081H-0FFH, which are all system management formats.

FD5 series servo drive supports COB-ID

• Send PDO (TXPDO)

TXBDO refers to the data sent by the servo relative to the servo, and these data are received by the PLC. The function code (COB-ID) for sending PDO is:

- 1、0x180+Servo station NO.
- 2、0x280+ Servo station NO.
- 3、0x380+ Servo station NO.
- 4、 0x480+ Servo station NO.
- Receive PDO (RXPDO)

Compared with the servo, the receiving PADO refers to the data received by the servo. These data are sent by the PLC. The function code (COB-ID) of the sending PDO is:

- 1、 0x200+ Servo station NO.
- 2、 0x300+ Servo station NO.
- 3、0x400+ Servo station NO.
- 4、 0x500+ Servo station NO.
- PDO transmission type

PDO has two different transmission type:

Synchronize (SYNC) ——Transmission triggered by synchronization messages (Transmission type: 0-240)

In this transmission mode, the controller must have the ability to send synchronization messages (messages sent periodically with a frequency of up to 1KHZ), and the servo will send the synchronization message after receiving the message. **Period** - The transfer type is 1-240. Delivery is triggered after every 1 to 240 SYNC messages. In this mode, the data in the PDO is sent once every time the servo drive receives n synchronization messages.

Asynchronous (Transmission Type: 254/255)

The message is sent after the slave message data has changed, regardless of whether the master asks it or not. And can define the time interval between two transmissions of the same message to avoid high priority messages occupying the bus all the time (the lower the PDO value, the higher the priority).

The transmission PDO(TPDO) of the FD5 series servo drive supports synchronous and asynchronous transmission modes, and the corresponding transmission type can be selected according to the transmission mode. For receiving PDO(RPDO), when the driver node is enabled in non-interpolation mode, the object data will be received in real time as long as the RPDO packets from the bus are detected, regardless of the transmission type setting. In interpolation mode, the driver receives data after

Kinco FD5 AC series servo driver user manual

detecting the RPDO signal, but only updates the object data at a specific point in time. Detailed interpolation mode controls are described in section 10.3.4.

• PDO inhibit time

A PDO can specify a prohibition time, that is to define the minimum interval between two consecutive PDO transmissions, to avoid the problem that the data volume of high-priority information will always occupy the bus and make other data with lower priority unable to compete for the bus. The disable time is defined by a 16-bit unsigned integer, the unit is 100ms.

• PDO event time

The interval (in ms) for the driver to send PDO packets to the controller in asynchronous transmission mode. Notice When using event time, disable time should be set to 0.

Protection mode/Monitoring Type Description

Supervision type refers to which inspection method the master station chooses to check the slave station during the running process, judge whether the slave station is faulty or not by these two methods, and make corresponding treatment according to these faults.

1. Master heartbeat message

The slave station periodically uploads messages to the master station with the "supervision time". If the master station has not received the next heartbeat message from the slave station after the "heartbeat client time", the master station judges that the communication is wrong and generates an alarm!

Table 10-19 Format of heartbeat message uploaded by slave station

COB-ID	Byte 0
0x700+Node_ID	Status
Case message (Sl	ave ID=1): 701 05

2. Slave heartbeat message

The master station periodically sends packets to the slave station according to the "monitor time". If the slave station does not receive the next heartbeat packet from the master station after the "Heartbeat Producer time", the slave station determines that the communication is wrong! When the communication interrupt mode (0x600700 set) is 1, the driver will alarm and stop when the CAN communication fails.

Table 10-20 Format of the heartbeat message sent by the master station

COB-ID	Byte 0
0x700+Node ID	Master station status
Case message (Slav	ve ID=127): 77F 05

Table 10-21 Status value

Status value	Meaning
0x00	Boot-up
0x04	Stopped
0x05	Operational
0x7f	Pre-operational

When a Heartbeat node starts up, its Boot-up message is its first Heartbeat message.

Note

The generation time of the heartbeat message and the heartbeat message of the slave station are configured by the power-on of the master station, and are not saved by default.

3. Node guard

The master station periodically sends a remote request message to the slave station with the "supervision time", and the slave station responds after receiving it. If the master station has not received the response message from the slave station after the time of "supervision time * life factor", the master station judges that the slave station has an error. At the same time, the slave station can also monitor the remote request status of the master station, and start communication protection from the first remote frame received. If the remote frame of the master station is not received after the time of "node protection time * node protection coefficient", the slave station will judge the communication error. You need to set the communication interruption mode (0x600700) to 1, the drive will alarm and stop when there is an error in CAN communication.

Master request message format—— (0x700+node number) (this message has no data)

Station response message format——(0x700+node number)+status

Table 10-22 Slave station response message

COB-ID	Byte 0
0x700+Node_ID	Bit7:trigger bit Bit6-Bit0:status

Table 10-23 The meaning of the status value of the response message from the slave station

Status value	Meaning
Status Value	
0	Initializing
1	Disconnected
2	Connecting
3	Preparing
4	Stopped
5	Operational
127	Pre-operational

Status - The data section includes a trigger bit (bit7), which must be alternately set to "0" or "1" in each node protection response. The trigger bit is set to 0 for the first node protection request. Bits 0 and 6 (bit0 to 6) indicate the node status. Table 10-18 describes the values.

The standard CAN slave station generally supports only one type of node protection, and the FD5 series servo drive supports both types of protection. However, a node cannot support both node protection and heartbeat packets at the same time. Only one of them can be used for protection.

Bootup process description

During network initialization, CANopen supports extended boot-up as well as minimized boot-up. This initialization process can be represented by a node state transition diagram, as shown in Figure 10-5.

Figure 10-5 Node state transition diagram

Note: The letters in parentheses in the figure indicate communication objects that can be used in different states.

a——NMT	d——Emergency	b——Node Guard
e——PDO	c——SDO	f——Boot-up

Switching between modes can be achieved through NMT management messages, only the NMT-Master node can send NMT Module Control messages, all slave devices must support the NMT Module Control service, and NMT Module control messages do not need to be answered. After the initialization is complete, the device automatically enters the Pre_Operational state and

sends Boot-up messages. NMT message format is as follows: Nmt-master →NMT Slave(s)

Table 10-24 Format of NMT managing message

	8	
COB-ID	Byte0	Byte1
0x000	CS	Node-ID

When Node-ID=0, all NMT slaves are addressed.CS is the command word, and its value is shown in Table 10-25.

Table 10-25 CS value table

Command word	NMT service
0x01	Start the remote node
0x02	Shut down the remote node

Kinco FD5 AC series servo driver user manual

0x80	Enter pre-operational state
0x81	Enter pre-operational state
0x82	Reset communication

Emergency message description

When a fatal error occurs inside the device, the application device sends an emergency packet with the highest priority to other devices. An emergency message consists of eight bytes.

Table 10-26 Emergency message format

COB-ID	Byte 0-1	Byte2	Byte4-5	Byte6-7
Emergency message station number 0x101400	Emergency Error code 0x603F00	Error register (0x100100)	Error state 0x260100	Error state 0x260200

Table 10-27 Emergency error code 0x603F00

Alarm content	Emergency error code (Hex)	Alarm content	Emergency error code (Hex)
Communication encoder is not connected 0x7331		Current sensor failure	0x5210
Communication encoder multi-turn error	0x7320	Software watchdog reset	0x6010
Communication encoder check error	0x7330	abort	0x6011
Drive temperature is too high	0x4210	MCU failure	0x7400
Drive bus voltage too high	0x3210	Motor model configuration error	0x6320
Drive bus voltage too low	0x3220	Phase loss of motor power line	0x6321
Drive power section short circuit or motor short circuit	0x2320	Pre-enable alarm	0x5443
Current sampling saturation	0x2321	Positive limit error	0x5442
Abnormal braking resistor of drive	0x7110	Negative limit error	0x5441
The actual following error exceeds the allowable	0x8611	SPI failure	0x6012
low logic voltage	0x5112	bus communication error	0x8100
Motor or drive overloaded	0x2350	Bus communication timeout	0x81FF
Input pulse frequency is too high	0x8A80	Full closed loop check error	0x8A81
Motor temperature is too high	0x4310	Main encoder ABZ fault	0x7382
Communication encoder does not respond	0x7331	Main encoder count error	0x7306
EEPROM data error	0x6310		

Table 10-28 Error registor

Bit	Error type
0	General error
1	Current
2	Voltage
3	Temperature
4	Communication error
5	Device Profile Specific
6	Encoder
7	Reserve

10.3.3 CANopen Bus communication settings

This chapter will introduce the settings of CAN bus communication parameters. In the host computer software interface, click Drive->ECAN Configuration->Other to enter the parameter setting interface. When the master station with network management function is powered on, it will initialize the parameters of the slave station by sending SDO. In general, parameters such as synchronization ID, node protection time, node protection time coefficient, node protection station number, emergency message station number, and heartbeat message generation time do not need to be set by the user.

Table 10-29	CANopen	communication	parameters

LED panel display	Internal address	Parameter's name	Description	Default value
			1: Stores all set parameters except the motor	
d5.00	2FF00108	Store control loop parameters	10: Initialize all saveable parameters except motor	0
d5.01	100B0008	Device Station No.	Drive station No. Note : To change this parameter, you need to use d5.00 to save and restart.	1
d5.17	2F810008	CAN baud rate	CAN baud rate settingValueBaud rate1001M50500k25250k12125k550k110kNote: need to save and restart	50
	60070010	Communication interruption mode	CAN Communication interruption mode0: do not handle1: report an error	0
	10050020	Sync ID	Synchronous message COB-ID, the transmission type is 1-240. It is valid in synchronous mode and does not need to be set in asynchronous mode.	
	100C0010	Node guard time	Through node guarding, the master station can	1000
	100D0008 Node guard time factor		monitor the current status of each node. The master station sends a remote frame to inquire about the node status with the node guard time as a period. The node needs to respond within the node guard time * node guard time coefficient, otherwise the master station Judging that the slave station is offline, when the communication interruption mode is 1, the drive alarms.	3
	100E0020	Node guard ID	700+Divice station No.(0x100B00)	701
	10140020	Emergency message station number	80+ Divice station No.(0x100B00)	81
	10170010	Heartbeat message generation time	The slave station periodically sends a message to the master station based on the "heartbeat message generation time". If the master station does not receive the message within a certain period of time, it judges that the slave station is offline and the master station alarms. The heartbeat message generation time data will not be saved when power off. It is configured by the master station when it is powered on (unit: ms). It should be noted that the data format is DEC.	0
	10160120 Slave heartbeat message		Data length The first bit of the 4 bits is invalid data, the second bit is the station ID, and the last two bits represent the heartbeat message interval, in ms. If the value is 7F03E8, it means that the ID of the master station is 127, and the heartbeat message interval is 1000ms. The heartbeat message data of the slave station will not be saved when power off. It is configured by the master station when it is powered on. Note that the data format is HEX	7F0000

EDS file download: https://www.kinco.cn/download/sfqdqdj36.html

10.3.4 Interpolation mode based on CANopen

The interpolation mode is suitable for single-axis operation control and multi-axis synchronous control. The master station performs the motion contour planning, and the target position is periodically updated in the synchronous mode. In the host computer software interface, click **Drive->ECAN Configuration->Other** to enter the interpolation mode parameter setting interface

Figure 10-6 Position interpolation curve

LED panel display	Internal address	Parameter name	Description	Value
	60600008	Operation mode	Set the operation mode to interpolation mode	7
			0x1F Enable drive, run interpolation mode 0x06 Loose axis, close drive enable 0x86 Reset drive failure	1F
	607A0020	target location	target absolute/relative position	Users define
	30110108	ECAN sync period	In interpolation mode, it is set according to the synchronization message cycle of the master station value synchronization period 0 1ms 1 2ms 2 4ms 3 8ms	Users define
	30110208	ECAN Synchronous Clock Mode	Set to 1 in interpolation mode to enable clock synchronization, and set to 0 in non- interpolation mode to disable clock synchronization.	0
	30110410	ECAN Sync Loss Count	Monitor the synchronous communication status in interpolation mode, if the value keeps changing, it means that there is communication interference or the synchronization period is inconsistent with the master station setting	/

Appendix 1: Braking Resistor Selection

The energy generated by the servo motor in the braking state will be fed back to the DC bus of the drive. When the voltage of the DC bus exceeds the protection range, the drive will report a bus voltage high fault, and the excess energy needs to be absorbed by an external braking resistor. When using an external braking resistor, please set the braking resistor resistance value and braking resistor power correctly. The resistance value of the optional external braking resistor cannot be lower than the recommended resistance value.

Model	Power[W]	Brake re	esistance resi	stance value[Ω]	Brake resistance	制动电阻耐压	
Widder	I Ower[w]	Min	Max	Ref	power[W] (Ref)	[VDC] (Min)	
	200W						
FD425-□A	400W	39	100	75	100	500	
	750W						
FD425-□F	1000W						
	1500W	27	51	39	200	500	
FD435-□A	2000W						
	1500W						
FD625-□A	2000W	47	150	75	200	800	
	3000W						

Table 11-1 Recommended specification of braking resistor

Table 11-2 Brake resistance parameters

Address	Name	Unit	Modbus address	Command type	Unit	Description
65100810	Chopped wave Voltage point	Unsigned16	0x6810	RW	V	Driver chopper voltage point. For a 220V driver, the default value is 380
60F70110	Brake resistance resistance value	Unsigned16	0x6010	RW	Ω	You can enter the resistance value and power of the external
60F70210	Brake resistance power	Unsigned16	0x6020	RW	W	brake resistance. The default value is 0, indicating that the external brake resistance power and temperature detection are disabled
60F70310	Brake resistance time constant	Unsigned16	0x6030	RW	S	External brake resistance time constant S=DEC*256/1000

Appendix II: List of Common Object Parameters

Note

- CANopen address and 232 communication address are the same
- Express register addressing in the form of Index (16-bit address) and Subindex (8-bit sub-address)
- The digit 0x08 indicates that the length of the data stored in this register is 1 Byte, the digit 0x10 indicates that the length of the data stored is 2 Bytes, and the digit 0x20 indicates that the length of the data stored is 4 Bytes
- R: readable, W: writable, S: savable, M: mappable;
- The complete CANopen address format is main index + sub index + data length, such as 60400010 (control word)
- The complete Modbus address format is a 4-digit hexadecimal number, such as 3100 (control word)

Mode and control (0x6040)

Name	CANopen	Modbus	Commend properties	Type of data	Description
Control word	60400010	3100	RWM	Unsigned16	0x06: Motor power off 0x0F: Motor power on 0x0B: Quick stop, load stop - voltage disconnect 0x2F \rightarrow 3F: absolute positioning mode 0x4F \rightarrow 5F: relative positioning mode 0x103F: absolute positioning based on target position changes 0x0F \rightarrow 1F: Origin positioning 0X86: clear internal fault
Status word	60410010	3200	RM	Unsigned16	Status Bit shows the status of the drive bit0: ready to power on bit1: powered on bit2: enable bit3: fault bit4: Disable output voltage bit5: Quick stop bit6: Power-on prohibition bit7: warning bit8: reserved internally bit9: remote control bit10: target position to bit11: Internal limit activation bit12: Impulse response bit13: Following error/Origin error bit14: Find motor excitation bit15: Origin found
Operation mode	60600008	3500	RWM	Integer8	Operating mode: 1: Positioning mode with position loop 3: Speed mode with position loop 4: Torque Mode -3: Speed loop (immediate speed mode) -4: Pulse mode 6: Homing mode 7: Motion interpolation based on CANopen

Absolute/relative position control selection	20200F10	0CF0	RWS	Unsigned16	When the "drive enable" function is configured to Din, and the corresponding Din valid input is 1, the "control word" (6040.00) will be set to this value; 0x2F: Absolute position control 0x4F: Relative position control
--	----------	------	-----	------------	---

Measurement data

Name	CANopen	Modbus	Commend type	Data type	Description
Actual position	60630020	3700	RM	Integer32	
Actual current	60780010	3E00	RM	Integer16	
Input port status	60FD0020	6D00	RM	Unsigned32	bit0: Negative limit signal status bit1: Positive limit signal status bit2: Origin signal status bit3: Hardware lock signal status
Actual velocity	606C0020	3B00	RM	Integer32	

Note

0x606C0020, The unit conversion method is DEC=[(RPM*512* Encoder resolution)/1875]

Target (0x607A)

Name	CANopen	Modbus	Commend type	Data type	Description
Velocity position direction control	607E0008	4700	RWS	Unsigned8	Run polarity reversal 0: Counterclockwise is the positive direction 1: Clockwise is the positive direction
Target position	607A0020	4000	RWM	Integer32	The target position in position mode 1, if the control word is set to start motion, transitions to the valid command position inc
Trapezoidal velocity	60810020	4A00	RWM	Unsigned3 2	Trapezoidal velocity (rpm) in operating mode 1
Target speed	60FF0020	6F00	RWM	Integer32	Target speed in mode 3 and -3,
Max velocity limit	60800010	4900	RW	Unsigned1 6	Default 5000rpm
Trapezoidal acceleration	60830020	4B00	RWSM	Unsigned3 2	Default: 610.352rps/s
Trapezoidal deceleration	60840020	4C00	RWSM	Unsigned3 2	Default: 610.352rps/s
Target torque	60710010	3C00	RW	Integer16	Torque command in torque mode, the percentage of target torque to rated torque
Target current	60F60810	5880	RWM	Integer16	Current command in torque mode
Target current limit	60730010	3D00	RWSM	Unsigned1 6	The maximum value of the current command, the unit is Arms

Note:

Velocity address: 0x60810020, 0x60800020, 0x60FF0020 The unit conversion method is 为 DEC=[(rpm*512*encoder resolution)/1875] Acceleration and deceleration address: 0x60830020, 0x60840020, The unit conversion method is DEC=[(rps/s*65536*encoder resolution)/4000000] Current address: 0x60710010, 0x60730010 The unit conversion method is 1Arms=[2048/(Ipeak/1.414)]DEC Note: Ipeak is peak current (6510.03)

Multi-segment position/multi-segment velocity (0x2020)

Name	CANopen	Modbus	Commend type	Data type	Description
Multi-stage position control 0	20200120	0C10	RWS	Integer32	
Multi-stage position control 1	20200220	0C20	RWS	Integer32	
Multi-stage position control 2	20200320	0C30	RWS	Integer32	
Multi-stage position control 3	20200420	0C40	RWS	Integer32	
Multi-stage Position Control 4	20201020	0D00	RWS	Integer32	
Multi-stage Position Control 5	20201120	0D10	RWS	Integer32	
Multi-stage position control 6	20201220	0D20	RWS	Integer32	
Multi-stage position control 7	20201320	0D30	RWS	Integer32	
Multi-stage speed control 0	20200520	0C50	RWS	Integer32	
Multi-stage speed control 1	20200620	0C60	RWS	Integer32	
Multi-stage speed control 2	20200720	0C70	RWS	Integer32	
Multi-stage speed control 3	20200820	0C80	RWS	Integer32	
Multi-stage speed control 4	20201420	0D40	RWS	Integer32	
Multi-stage speed control 5	20201520	0D50	RWS	Integer32	
Multi-stage speed control 6	20201620	0D60	RWS	Integer32	
Multi-stage speed control 7	20201720	0D70	RWS	Integer32	

Performance object (0x6065)

Name	Subindex	Modb us	Commend type	Data type	Description
Max. following error	60650020	3800	RWSM	Unsigned32	Following error value alarm value Default 524288inc
target location window	60670020	3900	RWS	Unsigned32	"Target location reached " target range, Default 10inc
reach position time window	25080916	1990	RW	Unsigned16	Target (location, velocity) reach time window, Determine the reach position signal together with 0x60670020
Reach speed window	60F90A20	63A0	RWS	Integer32	The error window when the actual speed reaches the target speed or trapezoidal speed, and determines the reach speed signal together with 0x60F91C20
Zero speed output speed window	20101810	0980	RWS	Unsigned16	Error window when actual speed is 0
Zero speed output time	60F91410	6440	RWS	Unsigned16	Zero-speed output speed window 0x20101810 After reaching the set range, it takes a period of time to output the zero-speed signal, and the time is determined by the zero-speed output time
Positive setting of soft limit	607D0120	4410	RWS	Integer32	Positive comparison point for setting software limit, unit in inc
Soft limit negative setting	607D0220	4420	RWS	Integer20	Negative comparison point for setting software limit, unit in inc
Limit function definition	20101908	0990	RWS	Unsigned8	Used to set the action after the limit is reached 0: If there is a limit after finding the origin, it will alarm 1: do nothing

Homing control (0x6098)

Name	CANopen	Modbu s	Commend type	Data type	Description
Homing mode					Homing function
0	60980008	4D00	RWSM	Integer8	Refer origin control chapter
Origin turning					After touching the trigger event, the
signal speed	60990120	5010	RWSM		speed of homing process (rpm)
Origin signal				Unsigned32	Speed when starting to find the origin
speed	60990220	5020	RWSM		speed when starting to find the origin
Homing					
acceleration	609A0020	5200	RWS	Unsigned32	Acceleration when homing process
	007A0020	5200	IC W D	Olisighed52	unit: rps/s
Origin offset	607C0020	4100	RWSM	Integer32	Offset value after homing unit: inc
					Origin Offset Mode Control
					0: run to the origin offset position, the
Origin Offset	60990508	5050	RWS	Unsigned8	actual position is displayed as 0
Mode	00990308	5050	KWS	Unsignedo	1: Run to the event trigger point, after
					the end the actual position will
					become: - Origin offset

Velocity loop parameters (0x60F9)

Name	CANopen	Modbus	Commend type	Data type	Description
Kvp	60F90110	6310	RW	Unsigned16	The larger the value, the stronger the gain, but it may cause the motor howling
Kvi	60F90210	6320	RW	Unsigned16	The larger the value, the stronger the gain, but it may cause the motor howling
Kvi/32	60F90710	6370	RW SL	Unsigned16	Kvi's 1/32
Output filter	60F90508	6350	RW	Unsigned8	velocity output filter of velocity loop BW=Speed_Fb_N*20+100[Hz]

Position loop parameters (0x60FB)

Name	CANopen	Modbus	Commend type	Data type	Description
kpp 0	60FB0110	6810	RWS	Unsigned16	Scale value of the position loop
kvff	60FB0210	6820	RWS	Unsigned16	Position loop speed feedforward
kaff	60FB0310	6830	RWS	Unsigned16	Acceleration feedforward for position loop
Smoothing filter	60FB0510	6850	RWS	Unsigned16	Modify in the disabled state
Actual position save enable	60FB0608		RWS	Unsigned8	Used to control whether to save the actual position when the logic power is lost 0: Not save 1: The actual position is saved after power-off 2: When the communication type single-turn absolute encoder motor is used, the actual position will display the single- turn absolute position when the drive is powered on.

Input/output port parameter (0x2010)

Name	CANopen	Modbus	Commend type	Data type	Description
Digital input 1	20100310	0830	RWS	Unsigned16	
Digital input 2	20100410	0840	RWS	Unsigned16	
Digital input 3	20100510	0850	RWS	Unsigned16	Refer to the function definition
Digital input 4	20100610	0860	RWS	Unsigned16	below
Digital output 1	20100F10	08F0	RWS	Unsigned16	below
Digital output 2	20101010	0900	RWS	Unsigned16	
Input port status	20100A10	08A0	RM	Unsigned16	bit0 : Din1 bit1 : Din2 bit2 : Din3 bit3 : Din4
Output port status	20101410	0940	RM	Unsigned16	bit0: Dout1 bit1: Dout2
Change the input signal polarity definition	20100110	0810	RWS	Unsigned16	0: Turn off; 1: Turn on bit0: Din1 bit1: Din2 bit2: Din3 bit3: Din4 bit4: Din5 bit5: Din6 bit6: Din7 bit7: Din8 Default 0xFF
Polarity definition of output port	20100D10	08D0	RWSM	Unsigned16	Polarity definition of output port
Input port signal simulation	20100210	0820	RW	Unsigned16	bit0 : Din1 bit1 : Din2 bit2 : Din3 bit3 : Din4 bit4 : Din5 bit5 : Din6 bit6 : Din7 bit7 : Din8
Output port signal simulation	20100E10	08E0	RWM	Unsigned16	bit0: Dout1 bit1: Dout2 bit2: Dout3 bit3: Dout4 bit4: Dout5

C series servo driver user manual	Appendix II: List of Common Object
Digital input function definition (HEX)	Digital output function definition (HEX)
0001: Enable	0001: Ready
0002: Reset Errors	0002: Error
0004: Drive working mode control	0004: Pos reached
0008: Kvi off	0008: Zero speed
0010: P Llimit+	0010: Motor brake
0020: P Llimit-	0020: Speed reached
0040: Home signal	0040: Index signal occurrence
0080: Invert direction	0080: Speed limit
0100: Din vel index 0	0100: Driver enabled
0200: Din vel index 1	0200: Position limit
0400: Din pos index0	0400: Home found
0800: Din pos index 1	0800: Torque reach limit
1000: Quick stop	1000: Multi Dout 0
2000: Start homing	2000: Multi Dout 1
4000: Activate command	4000: Multi Dout 2
8001: Din vel index 2	9001: Postable Active
8002: Din pos index 2	
8004: Multi-function input signal 0 (for	
setting multi-stage electronic gear ratio)	
8008: Multi-function input signal 1	
8010: Multi-function input signal 2	
8020: Gain switch 0	
8040: Gain switch 1	
8080: MaxCue Switch	
8100: Motor error	
8200: Pre-enable (the IO port must have an enable signal, otherwise it will alarm, for some occasions that need to determine the	
safety before running the machine)8400:	
Fast capture 1	
8800: Fast capture 2	
9001: PosTable Cond 0	
9002: PosTable Cond1	
9004: Start Postable	
9008: Postable idx 0	
9010: Postable idx 1	
9020: Postable idx 2	
9040: Abort Postable	

Pulse input parameters (0x2508)

Name	CANopen	Modbus	Commend type	Data type	Description
Electronic gear molecule 0	25080110	0x1910	RWSM	Integer16	Electronic gear molecule 0
Electronic gear denominator 0	25080210	0x1920	RWSM	Unsigned16	Electronic gear denominator 0
Pulse mode control	25080310	0x1930	RWSB	Integer16	0: Double pulse mode 1: Pulse direction mode 2: Incremental encoder mode 10:422 Double pulse mode 11: 422 pulse direction mode 12: 422 Incremental encoder mode
Number of input pulses before electronic gear	25080410	0x1940	RWM	Integer16	Number of input pulses before electronic gear
Number of input pulses after electronic gear	25080510	0x1950	RW	Integer16	Number of input pulses after electronic gear
Pulse filter parameters	25080610	0x1960	RWS	Unsigned16	Pulse filter parameters
Pulse frequency before gear	25080C10	0x19C0	RM	Integer16	Pulse frequency before gear (pulse/mS)
Pulse frequency after gear	25080D10	0x19D0	RW	Integer16	Pulse frequency after gear (pulse/mS)

Parameters for storage (0x2FF0)

Name	CANopen	Modbus	Commend type	Data type	Description
Storage control parameters	2FF00108	2910	RW	Unsigned8	1: Store all configuration parameters set 10: Initialize all configuration parameters Note: The control loop parameters are stored, excluding motor parameters.
Store motor parameters set	2FF00308	2930	RW	Unsigned8	1: Store all motor parameters set

Error code (0x2601)

Name	CANopen	Modbus	Commend type	Data type	Description
Error word	26010010	1F00	RM	Unsigned16	Real-time alarm error status bit0: Internal error alarm bit 1: Encoder ABZ connection alarm bit 2: Encoder UVW connection alarm bit 3: Encoder count alarm bit 3: Encoder count alarm bit 4: Driver high temperature alarm bit 5: Driver high voltage alarm bit 6: Driver low voltage alarm bit 7: Driver overcurrent alarm bit 8: Absorption resistance alarm bit 9: Alarm for excessive position error bit 10: Logic Low Voltage Alarm bit 11: Motor or drive iit alarmb it 12: Pulse frequency too high alarm bit 13: Motor high temperature alarm bit 14: Motor excitation alarm bit 15: Memory Alarm

Stop mode

Name	CANopen	Modbus	Commend type	Data type	Description
Quick stop mode	605A0010	3400	RWS	Integer16	Encountered limit switch, emergency stop switch, or control word is 0x000B 0: Uncontrolled stop 1: Curve stop 2: Quick stop deceleration stop 5: The curve stops, and finally stops in the fast stop state 6: Quick stop decelerates to stop, and finally stops in quick stop state
Shutdown mode	605B0010	3410	RWS	Integer16	Shutdown mode (drive enable canceled) 0: Uncontrolled stop 1: Curve stop 2: Quick stop deceleration stop
Disable stop mode	605C0010	3420	RWS	Integer16	0: Uncontrolled stop 1: Curve stop 2: Quick stop deceleration stop
Pause mode	605D0010	3430	RWS	Integer16	Control word bit8 is set to 1 Pause the motor and keep it enable 1: Decelerate and stop at the current deceleration 2: Quick stop deceleration stop
Error stop mode	605E0010	3440	RWS	Integer16	When the drive alarms 0: stop immediately 1: Decelerate to stop 2: Stop with quick stop deceleration
Trapezoidal deceleration	60840020	4C00	RWSM	Unsigned32	Deceleration in operating modes 1 and 3
Quick stop deceleration	60850020	3300	RWS	Unsigned32	Emergency stop deceleration

Other parameter

Name	CANopen	Modbus	Commend type	Data type	Description
Use internal motor library	30410608	-	RWS	Unsigned8	0: Automatically read the motor model from the encoder and use the corresponding motor parameters in the drive motor library (factory default) 1: Support the user to manually input the motor model and use the motor parameters corresponding to the motor library in the driver
Device restart	2FFF0010	2F00	RW	Unsigned16	Starting the bootloader 55AA: starts the bootloader AA55: Restarts the driver
Analog Increment	64101F10	-	RW	Integer16	Used to set the resolution of the communication magnetoelectric encoder to the incremental encoder resolution, which can be set to 4000,8000, and 10000 =0: Do not simulate incremental encoders, use the resolution of the default motor >0: Analog incremental encoder resolution Note: Multi-turn motors do not support analog increments.